Skip to main content
Log in

N-Acetyl-d-glucosamine Production by a Chitinase of Marine Fungal Origin: a Case Study of Potential Industrial Significance for Valorization of Waste Chitins

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chitin is a linear homo-polymer of N-acetyl-d-glucosamine (GlcNAc) and the second most abundant biopolymer after cellulose. Several industries rely on the bioprocesses for waste chitin recycle and hydrolysis by chitinase (EC 3.2.1.14) for potential healthcare applications through the production of its monomeric subunit, GlcNAc. In the present study, a chitinase-producing fungus (named as MFSRK-S42) was isolated from the marine water sample of North Bay of the Andaman and Nicobar Islands. It was identified as Aspergillus terreus by morphological and molecular characterization methods leveraging the internal transcribed spacer between 18S rRNA and 5.8S rRNA. Chitinase that was isolated from the fermentation broth of marine Aspergillus terreus was used to carry out biotransformation of chitineaceous wastes. Prior to the enzymatic hydrolysis step, chitins from different sources were characterized for the presence of characteristic functional groups, grain size distribution, and surface morphology. Enzymatic hydrolysis of 50 mg/ml substrate with six units of enzyme incubated for 5 days revealed 15, 36.5, 40, and 46 mg/ml GlcNAc production from ground prawn shell, chitin flakes, colloidal prawn shell, and swollen chitin respectively under standardized conditions, as determined by HPLC. In this study, 30, 73, 80, and 92% GlcNAc yields were observed from ground prawn shell, chitin flakes, colloidal prawn shell, and swollen chitin conversion respectively. The HPLC-eluted product was confirmed as GlcNAc by the presence of characteristic functional groups in FTIR and 244 Da molecular weight peak in HRMS analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen, J. K., Shen, G. R., & Liu, G. L. (2010). N–acetyl glucosamine: production and applications. Marine Drugs, 8(9), 2493–2516.

    Article  CAS  Google Scholar 

  2. Cody, R. M., Davis, N. D., Lin, J., & Shaw, D. (1990). Screening microorganisms for chitin hydrolysis and production of ethanol from amino sugars. Biomass, 21(4), 285–295.

    Article  CAS  Google Scholar 

  3. Kuk, J. H., Jung, W. J., Jo, G. H., Kim, Y. C., Kim, K. Y., & Park, R. D. (2005). Production of N-acetyl-β-D-glucosamine from chitin by Aeromonas sp. GJ-18 crude enzyme. Applied Microbiology and Biotechnology, 68(3), 384–389.

    Article  CAS  Google Scholar 

  4. Suresh, P. V., & Anil Kumar, P. K. (2012). Enhanced degradation of α-chitin materials prepared from shrimp processing byproduct and production of N-acetyl-D-glucosamine by thermos active chitinases from soil mesophilic fungi. Biodegradation, 23(4), 597–607.

    Article  CAS  Google Scholar 

  5. Li, H., Morimoto, K., Katagiri, N., Kimura, T., Sakka, K., Lun, S., & Ohmiya, K. (2002). A novel β-N-acetylglucosaminidase of Clostridium paraputrificum M—21 with high activity on chitobiose. Applied Microbiology and Biotechnology, 60(4), 420–427.

    Article  CAS  Google Scholar 

  6. Gao, C., Zhang, A., Chena, K., Hao, Z., Tong, J., & Ouyanga, P. (2015). Characterization of extracellular chitinase from Chitinibacter sp. GC72 and its application in GlcNAc production from crayfish shell enzymatic degradation. Biochemical Engineering Journal, 97, 59–64.

    Article  CAS  Google Scholar 

  7. Zhang, A., Gao, C., Wang, J., Chen, K., & Ouyang, P. (2016). An efficient enzymatic production of N-acetyl-D-glucosamine from crude chitin powders. Green Chemistry, 18(7), 2147–2154.

    Article  CAS  Google Scholar 

  8. Sashiwa, H., Fujishima, S., Yamano, N., Kawasaki, N., Nakayama, A., Muraki, E., Hiraga, K., Oda, K., & Aiba, S. (2002). Production of N-acetyl-D-glucosamine from α-chitin by crude enzymes from Aeromonas hydrophila H-2330. Carbohydrate Research, 337(8), 761–763.

    Article  CAS  Google Scholar 

  9. Jamialahrnadi, K., Behravan, J., Fathi Najafi, M., Tabatabaei-Yazdi, M., Shahverdi, A. R., & Faramarzi, M. A. (2011). Enzymatic production of N-acetyl-D-glucosamine from chitin using crude enzyme preparation of Aeromonas sp., PTCC1691. Biotechnology, 10(3), 292–297.

    Article  Google Scholar 

  10. Nguyen, N. V., Young, J. K., Oh, K. T., Jung, W. K., & Park, R. D. (2008). Antifungal activity of chitinases from Trichoderma aureoviride DY-59 and Rhizopus microspores VS-9. Current Microbiology, 56(1), 28–32.

    Article  Google Scholar 

  11. Krishnaveni, B., & Ragunathan, R. (2014). Chitinase production from marine wastes by Aspergillus terreus and its application in degradation studies. International Journal of Current Microbiology and Applied Sciences, 3(1), 76–82.

    CAS  Google Scholar 

  12. Chandrasekaran, M. (1997). Industrial enzymes from microorganisms: the Indian scenario. Journal of Marine Biotechnology, 5, 36–39.

    Google Scholar 

  13. Narayanan, K., Chopade, N., Vasanth, R. P., & Venkata, R. J. (2013). Fungal chitinase production and its application on bio-waste management. Journal of Scientific and Industrial Research, 72, 393–399.

    CAS  Google Scholar 

  14. Hsu, S. C., & Lockwood, J. L. (1975). Powdered chitin agar as a selective medium for enumeration of Actinomycetes in water and soil. Applied Microbiology, 29(3), 422–426.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

    Google Scholar 

  16. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315–322 In: PCR protocols: a guide to methods and applications, eds. Innis, M.A., D.H. Gelfand, J. J. Sninsky, and T. J. White. Academic Press, Inc., New York.

  17. Dey, P., Banerjee, J., & Maiti, M. K. (2011). Comparative lipid profiling of two endophytic fungal isolates—Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feed stock. Bioresource Technology, 102(10), 5815–5823.

    Article  CAS  Google Scholar 

  18. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA 4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599.

    Article  CAS  Google Scholar 

  19. De Marco, J. L., Lima, C. L. H., Desousa, M. V., & Felix, C. R. (2000). A Trichoderma harzianum chitinase destroys the cell walls of the phytopathogen Crinipellis pernicosa, the causal agent of the witches broom disease of cocoa. World Journal of Microbiology and Biotechnology, 16(4), 383–386.

    Article  Google Scholar 

  20. Nampoothiri, K. M., Baiju, T. V., Sandhya, C., Sabu, A., Szakacs, G., & Pandey, A. (2004). Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochemistry, 39(11), 1583–1590.

    Article  CAS  Google Scholar 

  21. Reese, E. T., & Maguire, A. (1969). Surfactants as stimulants of enzyme production by microorganisms. Applied Microbiology, 17(2), 242–245.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Monreal, J., & Reese, E. T. (1988). The chitinase of Serratia marcescens. Canadian Journal of Microbiology, 161, 689–696.

    Google Scholar 

  23. Mudasir, R. G., Tahir, I., & Wahyni, E. T. (2008). Immobilization of dithizone onto chitin isolated from prawn sea water shells (P. merguensis) and its preliminary study for the adsorption of Cd (II) ion. Journal of Physical Science, 19, 63–78.

    CAS  Google Scholar 

  24. Lee, S. H., Kim, H. J., Sakai, E., & Daimon, M. (2003). Effect of particle size distribution of fly ash–cement system on the fluidity of cement pastes. Cement and Concrete Research, 33(5), 763–768.

    Article  CAS  Google Scholar 

  25. Saha, P., Manna, S., Roy Chowdhury, S., Sen, R., Roy, D., & Adhikari, B. (2010). Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresource Technology, 101(9), 3182–3187.

    Article  CAS  Google Scholar 

  26. Young, V. L., Simpson, R. M., & Ward, V. K. (2005). Characterization of an exochitinase from Epiphyas postvittana nucleopolyhedrovirus (family Baculoviridae). Journal of General Virology, 86(12), 3253–3261.

    Article  CAS  Google Scholar 

  27. Klich, M. A. (1993). Morphological studies of Aspergillus section Versicoloes and related species. Mycologia, 85(1), 100–110.

    Article  Google Scholar 

  28. Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts. Molecular Ecology, 2(2), 113–118.

    Article  CAS  Google Scholar 

  29. Velmurugan, N., Kalpana, D., Hoon, H. J., Jung, C. H., & Yang, S. L. (2011). A novel low temperature chitinase from the marine fungus Plectosphaerella sp. strain MF 1. Botanica Marina, 54, 75–81.

    Article  CAS  Google Scholar 

  30. Chio, S., & Sangho, K. (2005). Efficient syntheses of the keto-carotenoids canthaxanthin, astaxanthin, and astacene. Journal of Organic Chemistry, 70(8), 3328–3331.

    Article  Google Scholar 

  31. Brugnerottoa, J., Lizardib, J., Goycooleab, F. M., Argu Èelles-Monalc, W., Desbrie Áresa, J., & Rinaudoa, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42(8), 3569–3580.

    Article  Google Scholar 

  32. Das, S., Sen, R., & Roy, D. (2012). Enzymatic processing of chitinaceous wastes for N-acetyl-D-glucosamine production: an example of green and efficient environmental management. Environmental Engineering and Management Journal, 11, 1849–1855.

    Article  CAS  Google Scholar 

  33. Libowitzky, E., & Rossman, G. R. (1997). An IR absorption calibration for water in minerals. American Mineralogist, 82(11-12), 1111–1115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical help received from Dr. R. Samanta and Dr. D. Gunasheelan during HPLC analyses.

Funding

SD is thankful to the National Jute Board (Govt. of India) and IIT Kharagpur for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramkrishna Sen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Figure S1

(PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Dey, P., Roy, D. et al. N-Acetyl-d-glucosamine Production by a Chitinase of Marine Fungal Origin: a Case Study of Potential Industrial Significance for Valorization of Waste Chitins. Appl Biochem Biotechnol 187, 407–423 (2019). https://doi.org/10.1007/s12010-018-2822-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2822-3

Keywords

Navigation