Skip to main content
Log in

Cantilever Functionalization Using Peroxidase Extract of Low Cost for Glyphosate Detection

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A cantilever nanobiosensor functionalized with vegetable source of peroxidase was developed as an innovative way for glyphosate herbicide detection over a wide concentration range (0.01 to 10 mg L−1) using atomic force microscopy (AFM) technique. The extract obtained from zucchini (Cucurbita pepo source of peroxidase), with high enzymatic activity and stability has been used as bio-recognition element to develop a nanobiosensor. The polarization-modulated reflection absorption infrared spectroscopy (PM-RAIRS) demonstrated the deposition of enzyme on cantilever surface using self-assembled monolayers (SAM) by the presence of the amide I and II bands. The detection mechanism of glyphosate was based on the changes in surface tension caused by the analyte adsorption, resulting in a conformational change in the enzyme structure. In this way, the results of nanobiosensor demonstrate the potential of the sensing device for detecting glyphosate with a detection limit of 0.028 mg L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cerda, R., Avelino, J., Gary, C., Tixier, P., Lechevallier, E., & Allinne, C. (2017). Primary and secondary yield losses caused by pests and diseases: assessment and modeling in coffee. PLoS One, 12, 1–17.

    Google Scholar 

  2. Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. Engineering in Life Sciences, 5(6), 497–526.

    Article  CAS  Google Scholar 

  3. Ccanccapa, A., Masiá, A., Andreu, V., & Picó, Y. (2016). Spatio-temporal patterns of pesticide residues in the Turia and Júcar Rivers (Spain). The Science of the Total Environment, 540, 200–210.

    Article  CAS  Google Scholar 

  4. Pollegioni, L., Schonbrunn, E., & Siehl, D. (2011). Molecular basis of glyphosate resistance—different approaches through protein engineering. The FEBS Journal, 278(16), 2753–2766.

    Article  CAS  Google Scholar 

  5. Dun, B., Wang, X., Lu, W., Chen, M., Zhang, W., Ping, S., Wang, Z., Zhang, B., & Lin, M. (2014). Development of highly glyphosate-tolerant tobacco by coexpression of glyphosate acetyltransferase gat and EPSPS G2-aroA genes. The Crop Journal, 2(2-3), 164–169.

    Article  Google Scholar 

  6. Held, A., Hudson, J., Martin, L., & Reeves W. (2016). Benefits and safety of glyphosate. 2016. Available from: monsanto.com/app/uploads/2017/07/Glyphosate-benefits-and-safety_public-FINAL.pdf. Accessed 10 November 2017.

  7. Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28, 1–15.

    Article  CAS  Google Scholar 

  8. Hegner, M., & Arntz, Y. (2004). Advanced biosensing using micromechanical cantilever arrays. Methods in Molecular Biology, 242, 39–49.

    CAS  PubMed  Google Scholar 

  9. Sang, S., Zhang, W., & Zhao, Y. (2013). Review on the design art of biosensors. In T. Rinken (Ed.), State of the art in biosensors - general aspects (pp. 89–110). Croatia: InTech.

    Google Scholar 

  10. Zhang, G.-P., Li, C., Ma, W., Wu, S.-Q., & Zhang, Q.-C. (2017). A cantilever array sensor platform guided by optical fibers and its sensing application. Chinese Journal of Analytical Chemistry, 45(1), 42–47.

    Article  CAS  Google Scholar 

  11. Rodrigues, L. F., Ierich, J. C. M., Andrade, M. A., Hausen, M. A., Leite, F. L., Moreau, A. L. D., & Steffens, C. (2017). Nanomechanical cantilever-based sensor: an efficient tool to measure the binding between the herbicide mesotrione and 4-hydroxyphenylpyruvate dioxygenase. NANO, 12(07), 1750079.

    Article  CAS  Google Scholar 

  12. Silva, A. C. N., Deda, D. K., Róz, A. L., Prado, R. A., Carvalho, C. C., Viviani, V., & Leite, F. L. (2013). Nanobiosensors based on chemically modified AFM probes: a useful tool for metsulfuron-methyl detection. Sensors, 13(2), 1477–1489.

    Article  Google Scholar 

  13. Bueno, C. C., Amarante, A. M., Oliveira, G. S., Deda, D. K., Teschke, O., Franca, E. F., & Leite, F. L. (2014). Nanobiosensor for diclofop detection based on chemically modified AFM probes. IEEE Sensors Journal, 14(5), 1467–1475.

    Article  CAS  Google Scholar 

  14. Karnati, C., Du, H., Ji, H.-F., Xu, X., Lvov, H., Mulchandani, A., Mulchandani, P., & Chen, W. (2007). Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosensors & Bioelectronics, 22(11), 2636–2642.

    Article  CAS  Google Scholar 

  15. Songa, E. A., Arotiba, O. A., Owino, J. H. O., Jahed, N., Baker, P. G. L., & Iwuoha, E. I. (2009). Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry, 75(2), 117–123.

    Article  CAS  Google Scholar 

  16. Fatibello-Filho, O., & Vieira, I. C. (2002). Uso analítico de tecidos e de extratos brutos vegetais como fonte enzimática. Química Nova, 25(3), 455–464.

    Article  CAS  Google Scholar 

  17. Sassolas, A., Blum, L. J., & Leca-Bouvier, B. D. (2002). Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances, 30, 489–511.

    Article  Google Scholar 

  18. Arya, S. K., Solanki, P. R., Datta, M., & Malhotra, B. D. (2009). Recent advances in self-assembled monolayers based biomolecular electronic devices. Biosensors & Bioelectronics, 24(9), 2810–2817.

    Article  CAS  Google Scholar 

  19. Awasthi, A. P., Grady, M. E., Kim, I. H., Sottos, N. R., & Geubelle, P. H. (2016). Nanoscale mechanical tailoring of interfaces using self-assembled monolayers. Mechanics of Materials, 98, 71–80.

    Article  Google Scholar 

  20. Justino, C. I. L., Freitas, A. C., Pereira, R., Duarte, A. C., & Santos, T. A. P. R. (2015). Recent developments in recognition elements for chemical sensors and biosensors. Trends in Analytical Chemistry, 68, 2–17.

    Article  CAS  Google Scholar 

  21. Lang, H. P., Hegner, M., & Gerber, C. (2010). Nanomechanical cantilever array sensors. In B. Bhushan (Ed.), Springer handbook of Nanotecnology (pp. 427–452). Berlin: Springer.

    Chapter  Google Scholar 

  22. Oliveira, G. C., Moccelini, S. K., Castilho, M., Terezo, A. J., Possavatz, J., Magalhães, M. R. L., & Dores, E. F. G. C. (2012). Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta, 98, 130–136.

    Article  CAS  Google Scholar 

  23. Velanki, S., & Ji, H.-F. (2006). Detection of feline coronavirus using microcantilever sensors. Measurement Science and Technology, 17(11), 2964–2968.

    Article  CAS  Google Scholar 

  24. Raiteri, R., Grattarola, M., Butt, H. J., & Skládal, P. (2001). Micromechanical cantilever-based biosensors. Sensors and Actuators B, 4010, 1–12.

    Google Scholar 

  25. Martinazzo, J., Muenchen, D. K., Brezolin, A. N., Cezaro, A. M., Rigo, A. A., Manzoli, A., Hoehne, L., Leite, F. L., Steffens, J., & Steffens, C. (2018). Cantilever nanobiosensor using tyrosinase to detect atrazine in liquid medium. Journal of Environmental Science and Health. Part. B, 53(4), 229–236. https://doi.org/10.1080/03601234.2017.1421833.

    Article  CAS  Google Scholar 

  26. Fernandes, S. C., de Oliveira, I. R. W. Z., & Vieira, I. C. (2007). A green bean homogenate immobilized on chemically crosslinked chitin for determination of caffeic acid in white wine. Enzyme and Microbial Technology, 40(4), 661–668.

    Article  CAS  Google Scholar 

  27. Vieira, I. C., Lupetti, K. O., & Fatibello-Filho, O. (2003). Determinação de paracetamol em produtos farmacêuticos usando um biossensor de pasta de carbono modificado com extrato bruto de abobrinha (Cucurbita pepo). Quimica Nova, 26(1), 39–43.

    Article  CAS  Google Scholar 

  28. Kirkwood, J., Hargreaves, D., O’keefe, S., & Wilson, J. (2015). Using isoelectric point to determine the pH for initial protein crystallization trials. Bioinformatics, 31(9), 1444–1451.

    Article  CAS  Google Scholar 

  29. Nicolas, J., Billaud, C. and Rouet-Mayer, M.A. (2003). Enzymatic—biochemical aspects, in: Encyclopedia of food sciences and nutrition (Caballero, B., ed.), Academic Press, San Diego, pp. 678–686.

  30. Battistuzzi, G., D'onofrio, M., Loschi, L., & Sola, M. (2001). Isolation and characterization of two peroxidases from Cucumis sativus. Archives of Biochemistry and Biophysics, 388(1), 100–112.

    Article  CAS  Google Scholar 

  31. Casella, L., Gullottit, M., Polit, S., Ferrari, R. P., Laurenti, E., & Marchesini, A. (1993). Purification, characterization and catalytic activity of anionic zucchini peroxidase. Biometals, 6, 213–222.

    Article  CAS  Google Scholar 

  32. Lacour, V., Moumanis, K., Hassen, W. M., Elie-Caille, C., Leblois, T., & Dubowski, J. J. (2017). Formation kinetics of mixed self-assembled monolayers of alkanethiols on GaAs(100). Langmuir. https://doi.org/10.1021/acs.langmuir.7b00929.

  33. Garidel, P., & Schott, H. (2006). Fourier-transform midinfrared spectroscopy for analysis and screening of liquid protein formulations. Bioprocess International, 48–55.

  34. Kreider, A., Sell, S., Kowalik, T., Hartwig, A., & Grunwald, I. (2014). Influence of immobilization protocol on the structure and function of surface bound proteins. Colloids and Surfaces, B: Biointerfaces, 116, 378–382.

    Article  CAS  Google Scholar 

  35. Steude, A., Schmidt, S., Robitzki, A. A., & Pänke, O. (2011). An electrode array for electrochemical immuno-sensing using the example of impedimetric tenascin C detection. Lab on a Chip, 11(17), 2884–2892.

    Article  CAS  Google Scholar 

  36. Yu-Cheng, L., Yu-chia, T., Woo-Hu, T., Tsui-Shan, H., Ko-Shao, C., & Shu-Chuan, L. (2008). The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification. Sensors and Actuators B: Chemical, 133, 370–373.

    Article  Google Scholar 

  37. Kim, H. H., Jeon, H. J., Cho, H. K., Cheong, J. H., Moon, H. S., & Go, J. S. (2015). Highly sensitive microcantilever biosensors with enhanced sensitivity for detection of human papilloma virus infection. Sensors and Actuators B: Chemical, 221, 1372–1383.

    Article  CAS  Google Scholar 

  38. Alonso, J. M., Bielen, A. A. M., Olthuis, W., Kengen, S. W. M., Zuilhof, H., & Franssen, M. C. R. (2016). Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing. Applied Surface Science, 383, 283–293.

    Article  CAS  Google Scholar 

  39. Gooding, J. J., & Hibbert, D. B. (1999). The application of alkanethiol self-assembled monolayers to enzyme electrodes. Trends in Analytical Chemistry, 18(8), 525–533.

    Article  CAS  Google Scholar 

  40. Hermanson, G. T. (2013). Zero-length crosslinkers. In G. T. Hermanson (Ed.), Bioconjugate techniques (pp. 259–273). Tokyo: Academic Press.

    Chapter  Google Scholar 

  41. Xia, N., Xing, Y., Wang, G., Feng, Q., Chen, Q., Feng, H., Sun, X., & Liu, L. (2013). Probing of EDC/NHSS-mediated covalent coupling reaction by the immobilization of electrochemically active biomolecules. International Journal of Electrochemical Science, 8, 2459–2467.

    CAS  Google Scholar 

  42. Tamayo, J., Kosaka, P. M., Ruz, J. J., San Paulo, A., & Calleja, M. (2013). Biosensors based on nanomechanical systems. Chemical Society Reviews, 42(3), 1287–1311.

    Article  CAS  Google Scholar 

  43. Wang, C., Wang, D., Mao, V., & Hu, X. (2007). Ultrasensitive biochemical sensors based on microcantilevers of atomic force microscope. Analytical Biochemistry, 363(1), 1–11.

    Article  CAS  Google Scholar 

  44. Zhang, Q., Xu, G., Gong, L., Dai, H., Zhang, S., Li, Y., & Lin, Y. (2015). An enzyme-assisted electrochemiluminescent biosensor developed on order mesoporous carbons substrate for ultrasensitive glyphosate sensing. Electrochimica Acta, 186, 624–630.

    Article  CAS  Google Scholar 

  45. Buchapudi, K., Xu, X., Ataian, Y., Ji, H. F., & Schulte, M. (2013). Micromechanical measurement of AChBP binding for label-free drug discovery. Analyst, 137, 263–268.

    Article  Google Scholar 

  46. Brasil. (2011). Ministério da Saúde. Portaria n° 2.914, de 12 de dezembro de 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Diário Oficial da União.

  47. EPA – United States Environmental Protection Agency. (2016). Table of regulated drinking water contaminants. Available from: www.epa.gov/your-drinking-water/table-regulated-drinking-water-contaminants. Accessed 27 April 2016.

  48. NRMMC – National Resource Management Ministerial Council. (2011). Australian drinking water guidelines paper 6 – National Water Quality Management Strategy Common Wealth of Australia. Available from: www.clearwater.asn.au/user-data/resource-files/Aust_drinking_water_guidelines.pdf. Accessed 27 April 2016.

  49. Health Canada. 2014. Guidelines for Canadian Drinking Water Quality – Summary table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch. Available from: www.hc-sc.gc.ca/ewh-semt/alt_formats/pdf/pubs/water-eau/sum_guide-res_recom/sum_guide-res_recom_2014-10_eng.pdf. Accessed 27 April 2016.

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Rubens Bernardes from Embrapa Instrumentation (Cnpdia) for AFM images contributions.

Funding

The study is funded by Cnpq, Capes, Fapergs, and Finep for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarice Steffens.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muenchen, D.K., Martinazzo, J., Brezolin, A.N. et al. Cantilever Functionalization Using Peroxidase Extract of Low Cost for Glyphosate Detection. Appl Biochem Biotechnol 186, 1061–1073 (2018). https://doi.org/10.1007/s12010-018-2799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2799-y

Keywords

Navigation