Skip to main content
Log in

Chitosan-Based Surface Molecularly Imprinted Polymer Microspheres for Sustained Release of Sinomenine Hydrochloride in Aqueous Media

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The surface molecular imprinting technique has been proposed as a prospective strategy for template molecule recognition and separation by devising the recognition sites on the surface of imprinted materials. The purpose of this study was to establish a novel drug delivery system which was developed by surface molecular imprinting method using β-cyclodextrin (β-CD)-grafted chitosan (CS) (CS-g-β-CD) microspheres as matrix and sinomenine hydrochloride (SM) as the template molecule. By adjusting the amount of functional monomer and cross-linking agent, we got the more excellent adsorption of CS-g-β-CD molecularly imprinted polymers (MIPs-CS-g-β-CD). When the amount of functional monomer was 6 mmol and cross-linking agent was 20 mmol, the maximum binding capacity of MIPs and non-imprinted polymers (NIPs) was 55.9 mg/g and 37.2 mg/g, respectively. The results indicated that the recognition of SM with MIPs was superior to NIPs. The adsorption isotherms of MIPs-CS-g-β-CD indicated that the adsorption behavior fitted better to the Langmuir model, which showed that the adsorption process of polymer was monomolecular layer. In in vitro drug release studies, the accumulative release amount of MIPs-CS-g-β-CD was up to 78% within 24 h. MIPs exhibited an excellent controlled SM release profile without burst release and the mechanism of SM release was shown to conform to non-Fick diffusion. Therefore, MIPs-CS-g-β-CD were successfully applied to extraction of SM and used as the materials for drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig 6

Similar content being viewed by others

References

  1. Ge, C., Jin, M., Du, P., Chan, Z., Cui, X., Zhang, Y., She, Y., Shao, H., Jin, F., Wang, S., Zheng, L., & Wang, J. (2017). A sensitive chemiluminescence enzyme immunoassay based on molecularly imprinted polymers solid-phase extraction of parathion. Analytical Biochemistry, 530, 87–93.

    Article  Google Scholar 

  2. Li, H. H., Wang, H. H., Li, W. T., Fang, X. X., Guo, X. C., Zhou, W. H., Cao, X., Kou, D. X., Zhou, Z. J., & Wu, S. X. (2016). A novel electrochemical sensor for epinephrine based on three dimensional molecularly imprinted polymer arrays. Sensors & Actuators B Chemical, 222(1), 1127–1133. https://doi.org/10.1016/j.snb.2015.08.018.

    Article  CAS  Google Scholar 

  3. Mirata, F., & Resmini, M. (2015). Molecularly imprinted polymers for catalysis and synthesis. Advances in Biochemical Engineering/Biotechnology, 150, 107–129. https://doi.org/10.1007/10_2015_319.

    Article  CAS  Google Scholar 

  4. Lok, C. M., & Son, R. (2009). Application of molecularly imprinted polymers in food sample analysis—a perspective. International Food Research Journal, 16, 127–140.

    Google Scholar 

  5. Azodi-Deilami, S., Abdouss, M., & Kordestani, D. (2014). Synthesis and characterization of the magnetic molecularly imprinted polymer nanoparticles using N, N-bis methacryloyl ethylenediamine as a new cross-linking agent for controlled release of meloxicam. Applied Biochemistry and Biotechnology, 172(6), 3271–3286. https://doi.org/10.1007/s12010-014-0769-6.

    Article  CAS  Google Scholar 

  6. Asadi, E., Azodi-Deilami, S., Abdouss, M., & Khaghani, S. (2012). Cyproterone synthesis, recognition and controlled release by molecularly imprinted nanoparticle. Applied Biochemistry and Biotechnology, 167(7), 2076–2087. https://doi.org/10.1007/s12010-012-9748-y.

    Article  CAS  Google Scholar 

  7. Haupt, K. (2001). Cheminform abstract: molecularly imprinted polymers in analytical chemistry. Analyst, 32(42), 747–756.

    Article  Google Scholar 

  8. Ye, L., & Haupt, K. (2004). Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Analytical & Bioanalytical Chemistry, 378(8), 1887–1897.

    Article  CAS  Google Scholar 

  9. Cunliffe, D., Kirby, A., & Alexander, C. (2005). Molecularly imprinted drug delivery systems. Advanced Drug Delivery Reviews, 57(12), 1836–1853. https://doi.org/10.1016/j.addr.2005.07.015.

    CAS  Google Scholar 

  10. Puoci, F., Cirillo, G., Curcio, M., Parisi, O. I., Iemma, F., & Picci, N. (2011). Molecularly imprinted polymers in drug delivery: state of art and future perspectives. Expert Opinion on Drug Delivery, 8(10), 1379–1393. https://doi.org/10.1517/17425247.2011.609166.

    Article  CAS  Google Scholar 

  11. Mahkam, M., & Poorgholy, N. (2011). Imprinted polymers as drug delivery vehicles for anti-inflammatory drugs. Nature and Science, 9(5), 163–168.

    Google Scholar 

  12. Oliveira, D., Gomes, C. P., Dias, R. C. S., & Cost, M. R. P. F. N. (2016). Molecular imprinting of 5-fluorouracil in  particles with surface RAFT grafted functional brushes. Reactive and Functional Polymers, 107, 35–45. https://doi.org/10.1016/j.reactfunctpolym.2016.08.007.

    Article  CAS  Google Scholar 

  13. Gama, M. R., & Bottoli, C. B. G. (2017). Molecularly imprinted polymers for bioanalytical sample preparation. Journal of Chromatography B, 1043, 107–121. https://doi.org/10.1016/j.jchromb.2016.09.045.

    Article  CAS  Google Scholar 

  14. Norell, M. C., Andersson, H. S., & Nicholls, I. A. (2016). Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism. Journal of Molecular Recognition, 11, 98–102.

    Article  Google Scholar 

  15. Zaidi, S. A. (2016). Molecular imprinted polymers as drug delivery vehicles. Drug Delivery, 23(7), 2262–2271. https://doi.org/10.3109/10717544.2014.970297.

    CAS  Google Scholar 

  16. Kryscio, D. R., & Peppas, N. A. (2009). Mimicking biological delivery through feedback-controlled drug release systems based on molecular imprinting. AICHE Journal, 55(6), 1311–1324. https://doi.org/10.1002/aic.11779.

    Article  CAS  Google Scholar 

  17. Zavareh, S., Mahdi, M., Erfanian, S., & Hashemi-Moghaddam, H. (2016). Synthesis of polydopamine as a new and biocompatible coating of magnetic nanoparticles for delivery of doxorubicin in mouse breast adenocarcinoma. Cancer Chemotherapy and Pharmacology, 78(5), 1073–1084. https://doi.org/10.1007/s00280-016-3169-5.

    Article  CAS  Google Scholar 

  18. Li, Q., Su, H. J., & Tan, T. W. (2008). Synthesis of ion-imprinted chitosan-TiO2 adsorbent and its multifunctional performances. Biochemical Engineering Journal, 38(2), 212–218. https://doi.org/10.1016/j.bej.2007.07.007.

    Article  CAS  Google Scholar 

  19. Haupt, K., Dzgoev, A., & Mosbach, K. (1998). Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element. Analytical Chemistry, 70(3), 628–631. https://doi.org/10.1021/ac9711549.

    Article  CAS  Google Scholar 

  20. Gao, B. J., Fu, H. Y., Li, Y. B., & Du, R. K. (2010). Preparation of surface molecularly imprinted polymeric microspheres and their recognition property for basic protein lysozyme. Journal of Chromatography B, 878(21), 1731–1738. https://doi.org/10.1016/j.jchromb.2010.04.033.

    Article  CAS  Google Scholar 

  21. Jia, X., Xu, M., Wang, Y., Ran, D., Yang, S., & Zhang, M. (2013). Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin. Analyst, 138(2), 651–658. https://doi.org/10.1039/C2AN36313E.

    Article  CAS  Google Scholar 

  22. Jiang, W., Su, H. J., Huo, H. Y., & Tan, T. W. (2010). Synthesis and properties of surface molecular imprinting adsorbent for removal of Pb2+. Applied Biochemistry and Biotechnology, 160(2), 467–476. https://doi.org/10.1007/s12010-008-8366-1.

    Article  CAS  Google Scholar 

  23. Chang, L. M., Wu, S., Chen, S. N., & Li, X. (2010). Preparation of graphene oxide-molecularly imprinted polymer composites via atom transfer radical polymerization. Journal of Materials Science, 46, 2024–2029.

    Article  Google Scholar 

  24. Antwi-Boampong, S., Mani, K. S., Carlan, J., & Belbruno, J. J. (2014). A selective molecularly imprinted polymer carbon nanotube sensor for cotinine sensing. Journal of Molecular Recognition, 27(1), 57–63. https://doi.org/10.1002/jmr.2331.

    Article  CAS  Google Scholar 

  25. Bakhshizadeh, M., Sazgarnia, A., Seifi, M., Hadizadeh, F., Rajabzadeh, G., & Mohajeri, S. A. (2017). TiO2-based mitoxantrone imprinted poly (methacrylic acid-co-polycaprolctone diacrylate) nanoparticles as a drug delivery system. Current Pharmaceutical Design, 23(18), 2685–2694. https://doi.org/10.2174/1381612823666170214122413.

    Article  CAS  Google Scholar 

  26. Shaikh, H., Memon, N., Bhanger, M. I., Nizamani, S. M., & Denizli, A. (2014). Core–shell molecularly imprinted polymer-based solid-phase microextraction fiber for ultra traceanalysis of endosulfan I and II in real aqueous matrix through gas chromatography–micro electron capture detector. Journal of Chromatography A, 1337, 179–187. https://doi.org/10.1016/j.chroma.2014.02.035.

    Article  CAS  Google Scholar 

  27. Guo, T. Y., Xia, Y. Q., Hao, G. J., Song, M. D., & Zhang, B. H. (2004). Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials, 25(27), 5905–5912. https://doi.org/10.1016/j.biomaterials.2004.01.032.

    Article  CAS  Google Scholar 

  28. Guo, T. Y., Xia, Y. Q., Wang, J., Song, M. D., & Zhang, B. H. (2005). Chitosan beads as molecularly imprinted polymer matrix for selective separation of proteins. Biomaterials, 26(28), 5737–5745. https://doi.org/10.1016/j.biomaterials.2005.02.017.

    Article  CAS  Google Scholar 

  29. Chang, Y. H., Zhang, L., Ying, H. J., Li, Z. J., Lv, H., & Ouyang, P. K. (2010). Desulfurization of gasoline using molecularly imprinted chitosan as selective adsorbents. Applied Biochemistry and Biotechnology, 160(2), 593–603. https://doi.org/10.1007/s12010-008-8441-7.

    Article  CAS  Google Scholar 

  30. Wu, X. H., Huang, M. J., Zhou, T., & Mao, J. (2016). Recognizing removal of norfloxacin by novel magnetic molecular imprinted chitosan/γ-Fe2O3 composites: Selective adsorption mechanisms, practical application and regeneration. Separation and Purification Technology, 165, 92–100. https://doi.org/10.1016/j.seppur.2016.03.041.

    Article  CAS  Google Scholar 

  31. Barati, A., Kazemi, E., Dadfarnia, S., & Shabani, A. M. H. (2017). Synthesis/characterization of molecular imprinted polymer based on magnetic chitosan/graphene oxide for selective separation/preconcentration of fluoxetine from environmental and biological samples. Journal of Industrial and Engineering Chemistry, 46, 212–221. https://doi.org/10.1016/j.jiec.2016.10.033.

    Article  CAS  Google Scholar 

  32. Zhao, Z., Xiao, J., Wang, J., Dong, W., Peng, Z., & An, D. (2015). Anti-inflammatory effects of novel sinomenine derivatives. International Immunopharmacology, 29(2), 354–360. https://doi.org/10.1016/j.intimp.2015.10.030.

    Article  CAS  Google Scholar 

  33. Ulivi, P., Mercatali, L., Zoli, W., Dell'Amore, D., Poletti, V., Casoni, G. L., Scarpi, E., Flamini, E., Amadori, D., Silvestrini, R., & Silvestrini, R. (2008). Serum free DNA and COX-2 mRNA expression in peripheral blood for lung cancer detection. Thorax, 63(9), 843–844. https://doi.org/10.1136/thx.2008.102178.

    Article  CAS  Google Scholar 

  34. Sun, Y., Yao, Y., & Ding, C. Z. (2014). A combination of sinomenine and methotrexate reduces joint damage of collagen induced arthritis in rats by modulating osteoclast-related cytokines. International Immunopharmacology, 18(1), 135–141. https://doi.org/10.1016/j.intimp.2013.11.014.

    Article  CAS  Google Scholar 

  35. Feng, S., Zhu, L., Huang, Z., Wang, H., Li, H., Zhou, H., Lu, L., Wang, Y., Liu, Z., & Liu, L. (2017). Controlled release of optimized electroporation enhances the transdermal efficiency of sinomenine hydrochloride for treating arthritis in vitro and in clinic. Drug Design Development & Therapy, 11, 1737–1752. https://doi.org/10.2147/DDDT.S136313.

    Article  Google Scholar 

  36. Zhang, W., Fu, H. L., Li, X. Y., Zhang, H., Wang, N., Li, W., & Zhang, X. X. (2016). Molecularly imprinted polymer doped with Hectorite for selective recognition of sinomenine hydrochloride. Journal of Biomaterials Science, Polymer Edition, 27(2), 144–156. https://doi.org/10.1080/09205063.2015.1114309.

    Article  CAS  Google Scholar 

  37. Mazzotti, M. (2006). Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm. Journal of Chromatography A, 1126(1-2), 311–322. https://doi.org/10.1016/j.chroma.2006.06.022.

    Article  CAS  Google Scholar 

  38. Allen, S. J., Mckay, G., & Porter, J. F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280(2), 322–333. https://doi.org/10.1016/j.jcis.2004.08.078.

    Article  CAS  Google Scholar 

  39. Ling, X., Li, H. P., Guo, J., Tang, Y. W., & Lai, J. P. (2010). Synthesis and characterization of molecularly imprinted polymeric microspheres for L-methyldopa and its application to drug delivery system. Acta Chimica Sinica, 68(1), 95–101.

    CAS  Google Scholar 

  40. Zhong, S. A., Zhou, C. Y., Zhang, X. N., Zhou, H., Li, H., Zhu, X. H., & Wang, Y. (2014). A novel molecularly imprinted material based on magnetic halloysitenanotubes for rapid enrichment of 2,4-dichlorophenoxyacetic acid inwater. Journal of Hazardous Materials, 276, 58–65. https://doi.org/10.1016/j.jhazmat.2014.05.013.

    Article  CAS  Google Scholar 

  41. Li, X. X., Pan, J. M., Dai, J. D., Dai, X. H., Xu, L. C., Wei, X., Hang, H., Li, C. X., & Liu, Y. (2012). Surface molecular imprinting onto magnetic yeast composites via atom transfer radical polymerization for selective recognition of cefalexin. Chemical Engineering Journal, 198-199, 503–511. https://doi.org/10.1016/j.cej.2012.05.106.

    Article  CAS  Google Scholar 

  42. Li, B. L., Zhang, M., Jiang, P., & Dong, X. C. (2007). Preparation and property evaluation of molecularly imprinted polymer grafted micro-spherical resin. Acta Chimica Sinica, 65(10), 955–961.

    CAS  Google Scholar 

  43. Umpleby 2nd, R. J., Baxter, S. C., Rampey, A. M., Rushton, G. T., Chen, Y., & Shimizu, K. D. (2004). Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. Journal of Chromatography B, 804(1), 141–149.

    Article  CAS  Google Scholar 

  44. Norell, M. C., Andersson, H. S., & Nicholls, I. A. (1998). Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism. Journal of Molecular Recognition, 11(1–6), 98–102. https://doi.org/10.1002/(SICI)1099-1352(199812)11:1/6<98::AID-JMR399>3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  45. Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I: Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders and discs. Journal of Controlled Release, 5(1), 23–36. https://doi.org/10.1016/0168-3659(87)90034-4.

    Article  CAS  Google Scholar 

  46. Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-Fickian release from swellable devices. Journal of Controlled Release, 5(1), 37–42. https://doi.org/10.1016/0168-3659(87)90035-6.

    Article  CAS  Google Scholar 

  47. Peppas, N. A., & Sahlin, J. J. (1989). A simple equation for description of solute release. International Journal of Pharmaceutics, 57(2), 169–172. https://doi.org/10.1016/0378-5173(89)90306-2.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Tianjin City High School Science & Technology Fund Planning Project (No. 20140305) and Tianjin Science and Technology Major Projects (No. 16ZXMJSY00130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, W., Yang, N. et al. Chitosan-Based Surface Molecularly Imprinted Polymer Microspheres for Sustained Release of Sinomenine Hydrochloride in Aqueous Media. Appl Biochem Biotechnol 185, 370–384 (2018). https://doi.org/10.1007/s12010-017-2658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2658-2

Keywords

Navigation