Skip to main content

Advertisement

Log in

In Vitro Evaluation and Statistical Optimization of Antimicrobial Activity of Prunus cerasoides Stem Bark

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nature is a generous source of compounds with the potential for prevention of infections. Antimicrobial screening of aqueous extract from bark of wild Himalayan cherry (Prunus cerasoides) was carried out against various pathogenic microorganisms with inhibition zone ranging from 19 to 24 mm. An optimization strategy, which included classical method and statistical method (RSM), was applied to optimize the effect of process variables. Fifteen percent plant material extracted at 40 °C for 60 min and at its natural pH (4.5) exhibited best antimicrobial activity with an average zone of inhibition ranging from 19 to 29 mm. Statistical optimization using RSM further enhanced the activity by 1.09–1.24 folds. Minimum inhibitory concentration of the aqueous extract against different microorganism ranged from 1 to 10 mg/ml. The aqueous extract was found to be reasonably thermostable at boiling temperature for 1 h. Viable cell count (VCC) studies of the extract showed it to be bactericidal in nature. Further, the aqueous extract was found to be neither cytotoxic nor mutagenic, when evaluated by MTT assay and Ames mutagenicity test. The results suggest that the aqueous extract of P. cerasoides could be a potential source to obtain new antimicrobials and effective herbal medicines to combat the problem of ever emerging microbial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cunha, B. A. (2001). Antibiotic side effects. Medical Clinics of North America, 85, 149–185.

    Article  CAS  Google Scholar 

  2. Ahmad, I., & Beg, A. Z. (2001). Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. Journal of Ethnopharmacology, 74, 113–123.

    Article  CAS  Google Scholar 

  3. Dash, M., Patra, J. K., & Panda, P. P. (2008). Phytochemical and antimicrobial screening of extracts of Aquilaria agallocha Roxb. African Journal of Biotechnology, 7, 3531–3534.

    CAS  Google Scholar 

  4. Cox, P. A., & Balick, M. J. (1994). The ethnobotanical approach to drug discovery. Scientific American, 270, 60–65.

    Article  Google Scholar 

  5. Nadkarni, K. M. (2002) Indian Materia Medica, 2nd ed., Bombay Popular Prakashan, pp. 10–16.

  6. Pullaiah, T. (2006). Encyclopaedia of world medicinal plants, vol. 1 (p. 1615). New Delhi: Regency Publication, West Patel Nagar.

  7. Chatterjee, A., & Pakrashi, S. C. (1992). The treatise on Indian medicinal plants. New Delhi: Publications and Information Directorate CSIR.

    Google Scholar 

  8. Dhar, M. L., Dhar, M. M., Mehrotra, D. B. N., & Ray, C. (1968). Screening of Indian plants for biological activity. Indian Journal of Experimental Biology, 6(1968), 232.

    CAS  Google Scholar 

  9. Joseph, N., Anjum, N., & Tripathi, Y. C. (2016). Phytochemical screening and evaluation of polyphenols, Flavonoids and Antioxidant Activity of Prunus cerasoides D. Don Leaves. Journal of Pharmacy Research, 10, 502–508.

    Google Scholar 

  10. Sharma, B. C. (2013). In vitro antibacterial activity of certain folk medicinal plants from Darjeeling Himalayas used to treat microbial infections. Journal of Pharmacognosy and Phytochemistry, 2, 1–4.

    Google Scholar 

  11. Bamola, N., Bisht, G., & Singh, L. (2008). In vitro antimicrobial activity of some medicinal plants of Garhwal. Plant Archives, 8, 133–137.

    Google Scholar 

  12. Arora, D. S., & Onsare, J. G. (2014). In vitro antimicrobial potential, biosafety and bioactive phytoconstituents of Moringa oleifera stem bark. World journal of pharmaceutical research, 3, 2772–2788.

    Google Scholar 

  13. Arora, D. S., Nim, L., & Kaur, H. (2016). Antimicrobial potential of Callistemon lanceolatus seed extract and its statistical optimization. Applied Biochemistry and Biotechnology, 180, 289–305.

    Article  CAS  Google Scholar 

  14. Katapodis, P., Christakopoulou, V., Kekos, D., & Christakopoulos, P. (2007). Optimization of xylanase production by Chaetomium thermophilum in wheat straw using response surface methodology. Biochemical Engineering Journal, 35, 136–141.

    Article  CAS  Google Scholar 

  15. Mahajan, V. (1992). Comparative evaluation of sensitivity of human pathogenic bacteria to tea, coffee and antibiotics, PhD thesis. Rohtak, India: MD University.

    Google Scholar 

  16. Parekh, J., & Chanda, S. (2006). In vitro antimicrobial activities of extracts of Launaea procumbens Roxb. (Labiateae), Vitis vinifera L. (Vitaceae) and Cyperus rotundus L. (Cyperaceae). African. Journal of biomedical Research, 9, 8993.

    Google Scholar 

  17. Suzuki, H., Okubo, L., Yamazaki, S., Suzuki, K., Mitsuya, H., & Toda, S. (1989). Inhibition of the infectivity and cytopathic effect of the human immunodeficiency virus by water soluble lignin in an extract of the culture medium of Lentinus edodes mycelia (LEM). Biochemical and Biophysical Research Communications, 60, 367–373.

    Article  Google Scholar 

  18. Mortelmans, K., & Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research, 455, 29–60.

    Article  CAS  Google Scholar 

  19. Kaur, H., Arora, D. S., & Sharma, V. (2014). Isolation, purification, and characterization of antimicrobial compound 6-[1,2-dimethyl-6-(2-methyl-allyloxy)-hexyl]-3-(2-methoxy-phenyl)-chromen-4-one from Penicillium sp. HT-28. Applied Biochemistry and Biotechnology, 173, 1963–1976.

    Article  CAS  Google Scholar 

  20. Ong, T., Whong, W. Z., Stewart, J. D., & Brockman, H. E. (1986). Chlorophyllin: a potent antimutagen against environmental and dietary complex mixtures. Mutation Research Letters, 173, 111–115.

    Article  CAS  Google Scholar 

  21. Negi, P., Jayaprakasha, G., & Jena, B. S. (2003). Antioxidant and antimutagenic activities of pomegranate peel extracts. Food Chemistry, 80, 393–397.

    Article  CAS  Google Scholar 

  22. Janssen, A. M., Scheffer, J. J. C., & Baerheim, S. A. (1976). Antimicrobial activity of essential oils. Planta Medica, 53, 395–398.

    Article  Google Scholar 

  23. Newman, D. J., & Cragg, G. M. (2007). Natural products as source of new drugs over the last 25 years. Journal of Natural Products, 70, 461–477.

    Article  CAS  Google Scholar 

  24. Muthu, M., Gopal, J., Min, S. X., & Chun, S. (2016). Green tea versus traditional Korean teas: antibacterial/antifungal or both? Applied Biochemistry and Biotechnology, 180, 780–790.

    Article  CAS  Google Scholar 

  25. Onsare, J. G., Kaur, H., & Arora, D. S. (2013). Antimicrobial activity of Moringa oleifera from different locations against some human pathogens. Academia Journal of Medicinal Plants, 1, 080–091.

    Google Scholar 

  26. Arora, D.S., & Sood, H. (2017). In vitro antimicrobial potential of extracts and phytoconstituents from Gymnema sylvestre R.Br. leaves and their biosafety evaluation. AMB Express, 7, 115. https://doi.org/10.1186/s13568-017-0416-z.

  27. Abubakar, E. M. (2010). Antibacterial potential of crude leaf extracts of Eucalyptus camaldulensis against some pathogenic bacteria. African Journal of Plant Science, 4, 202–209.

    Google Scholar 

  28. Kaur, G. J., & Arora, D. S. (2009). Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complementary and Alternative Medicine, 9, 30.

    Article  Google Scholar 

  29. Adeshina, G., Okeke, C., Onwuegbuchulam, N., & Ehinmidu, J. (2009). Preliminary studies on antimicrobial activities of ethanolic extracts of Ficus sycomorus Linn. and Ficus platyphylla Del. (Moraceae). International Journal of Biological and Chemical Sciences, 3, 147–151.

    Google Scholar 

  30. Thially, B. G., Milena, A. B., Francisco, F. M., Gilvandete, M. P., Cibele, B. M., Paula, B., Thiago, M., Jeanlex, S. S., Eduardo, B. B., Ronaldo, F., & Aparecida, T. (2012). Effect of subinihibitory and inhibitory concentrations of Plectranthus amboinicus (Lour.) Spreng essential oil on Klebsiella pneumoniae. Phytomedicine, 19, 962–968.

    Article  Google Scholar 

  31. Wu, Q. L., Chen, T., Gan, Y., Chen, X., & Zhao, X. M. (2007). Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs. Applied Microbiology and Biotechnology, 76, 783–794.

    Article  CAS  Google Scholar 

  32. Maher, O., Moharnad, S., Moharmnad, A., Enas, A., & Hanee, A. (2012). Antimicrobial activity of crude extracts of some plant leaves. Research Journal of Microbiology, 7, 59–67.

    Article  Google Scholar 

  33. Adeyemi, I. A., Christiana, I. A., Linda, N. E., Adebiyi, A., & Emmanuel, A. O. (2009). Antimicrobial and toxicological studies of epa-ijebu. a “wonder—Cure” concoction used in south-west, Nigeria. African Journal of Infectious Diseases, 3, 6–13.

    Google Scholar 

  34. Regasini, L. O., Cotinguiba, F., Passerini, G. D., Bolzani, V. S., Cicarelli, R. M. B., Kato, M. J., & Furlan, M. (2009). Trypanocidal activity of Piper arboreum and Piper tuberculatum (Piperaceae). Revista Brasileira de Farmacognosia, 19, 199–203.

    Article  CAS  Google Scholar 

  35. Helmerhorst, E. J., Reijnders, I. M., Hof, W. V. T., Smit, I. S., Veerman, E. C. J., & Amerongen, A. V. N. (1999). Amphotericin B and fluconazole-resistant Candida spp, Aspergillus fumigatus and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrobial Agents and Chemotherapy, 43, 702–704.

    CAS  Google Scholar 

  36. Masoko, P., Mmushi, T. J., Mogashoa, M. M., Mokgotho, M. P., Mampuru, L. J., & Howard, R. L. (2008). In vitro evaluation of the antifungal activity of Sclerocarya birrea extracts against pathogenic yeasts. African Journal of Biotechnology, 7, 3521–3526.

    CAS  Google Scholar 

Download references

Acknowledgements

The support offered to Himadri in the form of fellowship under university with potential for excellence (UPE) scheme of the UGC New Delhi assisted to the university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Arora.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, D.S., Mahajan, H. In Vitro Evaluation and Statistical Optimization of Antimicrobial Activity of Prunus cerasoides Stem Bark. Appl Biochem Biotechnol 184, 821–837 (2018). https://doi.org/10.1007/s12010-017-2571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2571-8

Keywords

Navigation