Skip to main content
Log in

Enzymatic Hydrolysis of Agavins to Generate Branched Fructooligosaccharides (a-FOS)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recently, agavins (branched neo-fructans) of short degree of polymerization have shown beneficial effects on the health of both healthy and overweight individuals. Therefore, the aim of the present work was to investigate the potential use of Agave angustifolia agavins on the generation of branched fructooligosacharides (a-FOS). A. angustifolia agavins were hydrolyzed using exo-, endo-inulinase, and a mixture of both (25 and 75%, respectively). Exo- and the inulinase mixture degraded quickly the agavins in relation to endo-inulinase treatment. Only endo-inulinase and the inulinase mixture generated a-FOS formation. Endo-inulinase degraded 31% of agavins, yielding approximately 20% of a-FOS after 48 h, whereas the inulinase mixture hydrolyzed 33% of agavins in just 90 min, but only yielded 10% of a-FOS. These results suggest that agave plants could be an abundant raw material for a-FOS production, which might have a huge prebiotic potential as new branched fructooligosaccharides with many applications in the alimentary and pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Good-Avila, S. V., Souza, V., Gaut, B. S., & Eguiarte, L. E. (2006). Timing and rate of speciation in Agave (Agavaceae). Proceedings of the National Academy of Sciences of the United States of America, 103, 9124–9129.

    Article  CAS  Google Scholar 

  2. Escamilla-Treviño, L. L. (2012). Potential of plants from the genus Agave as bioenergy crops. Bioenergy Research, 5, 1–9.

    Article  Google Scholar 

  3. López, M. G., Mancilla-Margalli, N. A., & Mendoza-Diaz, G. (2003). Molecular structures of fructans from Agave tequilana Weber Var. azul. Journal of Agricultural and Food Chemistry, 51, 7835–7840.

    Article  Google Scholar 

  4. Mancilla-Margalli, N. A., & López, M. G. (2006). Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. Journal of Agricultural and Food Chemistry, 54, 7832–7839.

    Article  CAS  Google Scholar 

  5. Lachenmeier, D. W., Sohnius, E. M., Attig, R., & López, M. G. (2006). Quantification of selected volatile constituents and anions in mexican agave spirits (tequila, mezcal, sotol, bacanora). Journal of Agricultural and Food Chemistry, 54, 3911–3915.

    Article  CAS  Google Scholar 

  6. Santiago-García, P. A., & López, M. G. (2014). Agavins from Agave angustifolia and Agave potatorum affect food intake, body weight gain and satiety-related hormones (GLP-1 and ghrelin) in mice. Food & Function, 5, 3311–3319.

    Article  Google Scholar 

  7. Urías-Silvas, J. E., Cani, P. D., Delmée, E., Neyrinck, A., López, M. G., & Delzenne, N. M. (2008). Physiological effects of dietary fructans extracted from Agave tequilana Gto. and Dasylirion spp. British Journal of Nutrition, 99, 254–261.

    Article  Google Scholar 

  8. Huazano-García, A., & López, M. G. (2015). Agavins reverse the metabolic disorders in overweight mice through the increment of short chain fatty acids and hormones. Food & Function, 6, 3720–3727.

    Article  Google Scholar 

  9. Nguyen, Q. D., Rezessy-Szabó, J. M., Czukor, B., & Hoschke, Á. (2011). Continuous production of oligofructose syrup from Jerusalem artichoke juice by immobilized endo-inulinase. Process Biochemistry, 46, 298–303.

    Article  CAS  Google Scholar 

  10. Singh, R. S., Singh, R. P., & Kennedy, J. F. (2016). Recent insights in enzymatic synthesis of fructooligosaccharides from inulin. International Journal of Biological Macromolecules, 85, 565–572.

    Article  CAS  Google Scholar 

  11. Singh, R. S., & Singh, R. P. (2010). Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technolology & Biotechnology, 48, 435–450.

    CAS  Google Scholar 

  12. Mutanda, T., Mokoena, M. P., Olaniran, A. O., Wilhelmi, B. S., & Whiteley, C. G. (2014). Microbial enzymatic production and applications of short-chain fructooligosaccharides and inulooligosaccharides: recent advances and current perspectives. Journal of Industrial Microbiology & Biotechnology, 41, 893–906.

    Article  CAS  Google Scholar 

  13. Xu, Y., Zheng, Z., Xu, Q., Yong, Q., & Ouyang, J. (2016). Efficient conversion of inulin to inulooligosccharides through endoinulinase from Aspergillus niger. Journal of Agricultural and Food Chemistry, 64, 2612–2618.

    Article  CAS  Google Scholar 

  14. Zhengy, J., Jing, W., Bo, J., & Xueming, X. (2005). Production of inulooligosaccharides by endoinulinases from Aspergillus ficuum. Food Research International, 38, 301–308.

    Article  Google Scholar 

  15. Ronkart, S. N., Blecker, C. S., Fourmanoir, H., Fougnies, C., Deroanne, C., Van Herck, J. C., & Paquot, M. (2007). Islation and identification of inulooligosaccharides resulting from inulin hydrolysis. Analytica Chimica Acta, 604, 81–87.

    Article  CAS  Google Scholar 

  16. Mutanda, T., Wilhelmi, B. S., & Whiteley, C. G. (2008). Response surface methodology: synthesis of inulooligosaccharides with an endoinulinase from Aspergillus niger. Enzyme Microbial Technology, 43, 362–368.

    Article  CAS  Google Scholar 

  17. Ricca, E., Calabrò, V., Curcio, S., & Iorio, G. (2007). The state of the art in the production of fructose from inulin enzymatic hydrolysis. Critical Reviews in Biotechnology, 27, 129–145.

    Article  CAS  Google Scholar 

  18. Muñoz-Gutiérrez, I., Rodríguez-Alegría, M. E., & López-Munguía, A. (2009). Kinetic behaviour and specificity of β-fructosidases in the hydrolysis of plant and microbial fructans. Process Biochemistry, 44, 891–898.

    Article  Google Scholar 

  19. Avila-Fernández, A., Rendón-Poujol, X., Olvera, C., González, F., Capella, S., Peña-Alvarez, A., & López-Munguía, A. (2009). Enzymatic hydrolysis of fructans in the tequila production process. Journal of Agricultural and Food Chemistry, 57, 5578–5585.

    Article  Google Scholar 

  20. García-Aguirre, M., Sáenz-Álvaro, V. A., Rodríguez-Soto, M. A., Vicente-Magueyal, F. J., Botello-Álvarez, E., Jimenez-Islas, H., Cárdenas-Manríquez, M., Rico-Martínez, R., & Navarrete-Bolaños, J. L. (2009). Strategy for biotechnological process design applied to the enzymatic hydrolysis of agave fructo-oligosaccharides to obtain fructose-rich syrups. Journal of Agricultural and Food Chemistry, 57, 10205–10210.

    Article  Google Scholar 

  21. Waleckx, E., Mateos-Diaz, J. C., Gschaedler, A., Colonna-Ceccaldi, B., Brin, N., García-Quezada, G., Villanueva-Rodríguez, S., & Monsan, P. (2011). Use of inulinases to improve fermentable carbohydrate recovery during tequila production. Food Chemistry, 124, 1533–1542.

    Article  CAS  Google Scholar 

  22. Montañez Soto, J. L., Venegas González, J., Bernardino Nicanor, A., & Ramos Ramírez, E. G. (2011). Enzymatic production of high fructose syrup from Agave tequilana fructans and its physicochemical characterization. African Journal of Biotechnology, 10, 19137–19143.

    Google Scholar 

  23. Michel-Cuello, C., Ortiz-Cerda, I., Moreno-Vilet, L., Grajales-Lagunes, A., Moscosa-Santillán, M., Bonnin, J., González-Chávez, M. M., & Ruiz-Cabrera, M. (2012). Study of enzymatic hydrolysis of fructans from Agave salmiana characterization and kinetic assessment. The Scientific World Journal, 2012, 863432.

    Article  Google Scholar 

  24. Anderson, K., Li, S. C., & Li, Y. T. (2000). Diphenylamine-aniline-phosporic acid reagent, a versatile spray reagent for revealing glycoconjugates on thin-layer chromatography plates. Analytical Biochemistry, 287, 337–339.

    Article  CAS  Google Scholar 

  25. Corradini, C., Bianchi, F., Matteuzzi, D., Amoretti, A., Rossi, M., & Zanoni, S. (2004). High-performance anion-exchange chromatography coupled with pulsed amperometric detection and capillary zone electrophoresis with indirect ultra violet detection as powerful tools to evaluate prebiotic properties of fructooligosaccharides and inulin. Journal of Chromatography a, 1054, 165–173.

    Article  CAS  Google Scholar 

  26. Mellado-Mojica, E., & López, M. G. (2012). Fructan metabolism in A. tequilana Weber blue variety along its developmental cycle in the field. Journal of Agricultural and Food Chemistry, 60, 11704–11713.

    Article  CAS  Google Scholar 

  27. Moriyama, S., Akimoto, H., Suetsugu, N., Kawasaki, S., Nakamura, T., & Ohta, K. (2002). Purification and properties of an extracellular exoinulinase from Penicillium sp. strain TN-88 and sequence analysis of the encoding gene. Bioscience, Biotechnology, and Biochemistry, 66, 1887–1896.

    Article  CAS  Google Scholar 

  28. Liu, Y., Zhou, S. H., Cheng, Y. R., Chi, Z., Chi, Z. M., & Liu, G. L. (2016). Synergistic effect between the recombinant exo-inulinase and endo-inulinase on inulin hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 128, 27–38.

    Article  Google Scholar 

  29. White, J. S., & Nicklas, T. A. (2016). High-fructose corn syrup use in beverages: composition, manufacturing, properties, consumption, and health effects. In T. Wilson & N. J. Temple (Eds.), Beverage impacts on health and nutrition (pp. 285–301). Cham: Springer International.

    Chapter  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Patricia Araceli Santiago-García for the agavins extraction from A. angustifolia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes G. López.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huazano-García, A., López, M.G. Enzymatic Hydrolysis of Agavins to Generate Branched Fructooligosaccharides (a-FOS) . Appl Biochem Biotechnol 184, 25–34 (2018). https://doi.org/10.1007/s12010-017-2526-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2526-0

Keywords

Navigation