Skip to main content
Log in

Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The anaerobic treatment of raw vinasse in a combined system consisting in two methanogenic reactors, up-flow anaerobic sludge blanket (UASB) + anaerobic packed bed reactors (APBR), was evaluated. The organic loading rate (OLR) was varied, and the best condition for the combined system was 12.5 kg COD m−3day−1 with averages of 0.289 m3 CH4 kg COD r−1for the UASB reactor and 4.4 kg COD m−3day−1 with 0.207 m3 CH4 kg COD r−1 for APBR. The OLR played a major role in the emission of H2S conducting to relatively stable quality of biogas emitted from the APBR, with H2S concentrations <10 mg L−1. The importance of the sulphate to COD ratio was demonstrated as a result of the low biogas quality recorded at the lowest ratio. It was possible to develop a proper anaerobic digestion of raw vinasse through the combined system with COD removal efficiency of 86.7% and higher CH4 and a lower H2S content in biogas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

OLR:

Organic loading rate

COD:

Chemical oxygen demand, g L−1

SRB:

Sulphate-reducing bacteria

LDPF:

Low-density polyurethane foam

ɳCOD:

COD removal efficiency

TS:

Total solids, g L−1

TVS:

Total volatile solids, g L−1

VSS:

Volatile suspended solids, g L−1

TKN:

Total nitrogen, g L−1

VFA:

Volatile fatty acids, g L−1

TIC:

Total inorganic carbonate, g L−1

Q:

Volumetric flow

HAc:

Acetic acid, g L−1

HPr:

Propionic acid, g L−1

HBu:

Butyric acid, g L−1

HVa:

Valeric acid, g L−1

UASB:

Up-flow anaerobic sludge blanket

APBR:

Anaerobic packed bed reactors

DHS:

Down-flow hanging sponge

SR:

Sulphate reducing tank

ASTBR:

Anaerobic structured-bed reactor

AR:

Acidification reactor

SAnMBR:

Submerged anaerobic membrane bioreactor

AFBR:

Anaerobic fluidized bed reactor

GBABR:

Granular bed anaerobic baffled reactor

CSTR:

Continuously stirred tank reactor

UASFB:

Hybrid up-flow anaerobic sludge-filter bed reactor

AH:

Anaerobic hybrid reactor

USSB:

Modified sludge blanket reactor

SBR:

Sequential batch reactor

MS-UASB:

Multistaged up-flow anaerobic sludge blanket

References

  1. Moraes, B. S., Zaiat, M., & Bonomi, A. (2015). Anaerobic digestion of vinasse from sugar cane ethanol production in Brazil: challenges and perspectives. Renewable and Sustainable Energy Reviews, 44, 888–903.

    Article  CAS  Google Scholar 

  2. Christofoletti, C. A., Escher, J. P., Correia, J. E., Urbano, M. J. F., & Fontanetti, C. S. (2013). Sugarcane vinasse: environmental implications of its use. Review. Waste Management, 33, 2752–2761.

    Article  CAS  Google Scholar 

  3. Fuess, L. T., & Garcia, M. (2014). Review. Implications of stillage land disposal: a critical review on the impacts of fertigation. Journal of Environmental Management, 145, 210–229.

    Article  CAS  Google Scholar 

  4. España, E., Mijangos, J., Barahona, L., Domíguez, J., Hernández, G., & Alzate, L. (2011). Review: vinasse: characterization and treatments. Waste Management & Research, 29, 1235–1250.

    Article  Google Scholar 

  5. Moraes, B. S., Junqueira, T. L., Pavanello, L. G., Cavalett, O., Mantelatto, P. E., Bonomi, A., & Zaiat, M. (2014). Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense? Applied Energy, 113, 825–835.

    Article  CAS  Google Scholar 

  6. Wilkie, A., Riedesel, K., & Owens, J. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy, 19, 63–102.

    Article  CAS  Google Scholar 

  7. Pant, D., & Adholeya, A. (2007). Biological approaches for treatment of distillery wastewater: a review. Bioresource Technology, 98, 2321–2334.

    Article  CAS  Google Scholar 

  8. Janke, L., Leite, A. F., Batista, K., Silva, W., Nikolausz, M., Nelles, M., & Stinner, W. (2016). Enhancing biogas production from vinasse in sugarcane biorefineries: effects of urea and trace elements supplementation on process performance and stability. Bioresource Technology. doi:10.1016/j.biortech.2016.01.110.

    Google Scholar 

  9. Vlyssides, A., Barampouti, E. M., Mai, S., Stamatoglou, A., & Tsimas, E. (2010). Alternative biological systems for the treatment of vinasse from wine. Wat. Sci. Tech., 62(12), 2899–2904.

    Article  CAS  Google Scholar 

  10. España-Gamboa, E., Mijangos-Cortés, J. O., Hernández-Zárate, G., Domínguez Maldonado, J. A., & y Alzate-Gaviria, L. M. (2012). Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor. Biotechnology for Biofuels, 5, 82.

    Article  Google Scholar 

  11. Mota, V. T., Santos, F. S., & Amaral, M. C. S. (2013). Two-stage anaerobic membrane bioreactor for the treatment of sugarcane vinasse: assessment on biological activity and filtration performance. Bioresource Technology., 146, 494–503.

    Article  CAS  Google Scholar 

  12. Siqueira, L. M., Damiano, E. S. G., & Silva, E. L. (2013). Influence of organic loading rate on the anaerobic treatment of sugarcane vinasse and biogás production in fluidized bed reactor. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 48(13), 1707–1716.

    Article  CAS  Google Scholar 

  13. Thanikal, J. V., Torrijos, M., Habouzit, F., & Moletta, R. (2007). Treatment of distillery vinasse in a high rate anaerobic reactor using low density polyethylene supports. Wat.Sci. Tech., 56(2), 17–24.

    Article  CAS  Google Scholar 

  14. Acharya, B. K., Mohana, S., & Madamwar, D. (2008). Anaerobic treatment of distillery spent wash—a study on upflow anaerobic fixed film bioreactor. Bioresource Technology, 99(11), 4621–4626.

    Article  CAS  Google Scholar 

  15. Balloch, M. I., Akunna, J. C., & Collier, P. J. (2007). The performance of a phase separated granular bioreactor treating brewery wastewater. Bioresource Technology, 98(9), 1849–1855.

    Article  Google Scholar 

  16. Méndez-Acosta, H. O., Snell-Castro, R., Alcaraz-González, V., González-Alvarez, V., & Pelayo-Ortiz, C. (2010). Anaerobic treatment of tequila vinasses in a CSTR-type digester. Biodegradation, 21(3), 357–363.

    Article  Google Scholar 

  17. Rajagopal, R., Mehrotrai, M., Kumar, P., & Torrijos, M. (2010). Evaluation of a hybrid upflow anaerobic sludge-filter bed reactor: effect of the proportion of packing medium on performance. Wat. Sci. Tech., 61(6), 1441–1450.

    Article  CAS  Google Scholar 

  18. Nasr, N., Elbeshbishy, E., Hafez, H., Nakhla, G., Hesham, M., & Naggar, E. (2012). Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage. Bioresource Technology, 111, 122–126.

    Article  CAS  Google Scholar 

  19. Onodera, T., Sase, S., Choeisai, P., Yoochatchaval, W., Sumino, H., Yamaguchi, T., Ebie, Y., Xu, K., Tomioka, N., Mizuochi, M., & Syutsubo, K. (2013). Development of a treatment system for molasses wastewater: the effects of cation inhibition on the anaerobic degradation process. Bioresource Technology, 131, 295–302.

    Article  CAS  Google Scholar 

  20. Wolmarans, B., de Villiers, H., & G. (2002). Start-up of a UASB effluent treatment plant on distillery wastewater. Water SA, 28(1), 63–68.

    Article  CAS  Google Scholar 

  21. Kaparaju, P., Serrano, M., & Angelidaki, I. (2010). Optimization of biogas production from wheat straw stillage in UASB reactor. Applied Energy, 87, 3779–3783.

    Article  CAS  Google Scholar 

  22. Asif, M. L., Ghufran, R., Abdul, Z. W., & Ahmad, A. (2011). Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Research, 45, 4683–4699.

    Article  Google Scholar 

  23. Rivera, A., González, J. S., Castro, R., Guerrero, B., & Nieves, G. (2002). Tratamiento de efluentes de destilería en un filtro anaerobio de flujo ascendente. Revista Internacional de Contaminación Ambiental, 18(3), 131–137.

    CAS  Google Scholar 

  24. Yu, H. Q., Zhao, Q. B., & Tang, Y. (2006). Anaerobic treatment of winery wastewater using laboratory-scale multi- and single-fed filters at ambient temperatures. Process Biochemistry, 41, 2477–2481.

    Article  CAS  Google Scholar 

  25. Cabrera-Díaz, A., Dueñas-Moreno, J., Véliz-Lorenzo, E., Díaz-Marrero, M. A., Menéndez-Gutiérrez, C. L., Oliva-Merencio, D., Pereda-Reyes, I., & Zaiat, M. (2016). Combined treatment of vinasse by an upflow anaerobic filter-reactor and ozonation process. Brazilian Journal of Chemical Engineering, 33(4), 753–762.

    Article  Google Scholar 

  26. Singh, S. P., & Prerna, P. (2009). Review of recent advances in anaerobic packed-bed biogas reactors. Renewable and Sustainable Energy Reviews, 13, 1569–1575.

    Article  CAS  Google Scholar 

  27. Cresson, R., Carrére, H., Delgénes, J. P., & Bernet, N. (2006). Biofilm formation during the start-up period of an anaerobic biofilm reactor—impact of nutrient complementation. Biochemical Engineering Journal., 30, 55–62.

    Article  CAS  Google Scholar 

  28. Sunil, K. G., Gupta, S. K., & Singh, G. (2007). Biodegradation of distillery spent wash in anaerobic hybrid reactor. Water Research, 41, 721–730.

    Article  Google Scholar 

  29. Buitrón, G., Kumar, G., Martinez-Arce, A., & Moreno, G. (2014). Hydrogen and methane production via a two-stage processes (H2-SBR + CH4-UASB) using tequila vinasses. International Journal of Hydrogen Energy, 39, 19249–19255.

    Article  Google Scholar 

  30. Choeisai, P., Jitkam, N., Silapanoraset, K., Yubolsai, C., Yoochatchaval, W., Yamaguchi, T., Onodera, T., & Syutsubo, K. (2014). Sugarcane molasses-based bio-ethanol wastewater treatment by two-phase multi-staged up-flow anaerobic sludge blanket (UASB) combination with up-flow UASB and down-flow hanging sponge. Wat. Sci. Tech., 69(6), 1174–1180.

    Article  CAS  Google Scholar 

  31. Fuess, L. T., Kiyuna, L. S. M., Ferraz Jr., A. D. N., Persinoti, G. F., Squina, F. M., Garcia, M. L., & Zaiat, M. (2017). Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Applied Energy, 189, 480–491.

    Article  CAS  Google Scholar 

  32. Fdz-Polanco, F., Fdz-Polanco, M., Fernandez, N., Urueña, M. A., García, P. A., & Villaverde, S. (2001). New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions. Water Research, 35, 1111–1114.

    Article  CAS  Google Scholar 

  33. Khanal, S. K. (2008). In S. K. Khanal (Ed.), Bioenergy recovery from sulfate-rich waste streams and strategies for sulfide removal: anaerobic biotechnology for bioenergy production: principles and applications. Singapore: Wiley.

    Google Scholar 

  34. Barrera, E. L., Spanjers, H., Romero, O., Rosa, E., & Dewulf, J. (2014). Characterization of the sulfate reduction process in the anaerobic digestion of a very high strength sulfate rich vinasse. Chemical Engineering Journal, 248, 383–393.

    Article  CAS  Google Scholar 

  35. Escudié, R., Cresson, R., Delgenès, J.-P., & Bernet, N. (2011). Review. Control of start-up and operation of anaerobic biofilm reactors: an overview of 15 years of research. Water Research, 45, 1–10.

    Article  Google Scholar 

  36. APHA, AWWA, WEF. (2005). Standards methods for the examination of water and wastewater (21st ed.). Washington DC: American Public Health Association/American Water Works Association/Water Environmental Federation.

    Google Scholar 

  37. Dubois, S. M., Gilles, K. A., Hamilton, J. L., Rebers, P. A., & Smith, F. (1956). Colorimetric methods for determination of sugar and related substance. Analytical Chemistry, 228, 13–21.

    Google Scholar 

  38. Lossie, U., and Pütz, P. (2008). Targeted control of biogas plants with the help of FOS/TAC. Practice report. Germany.

  39. Adorno, T. M. A., Hirasawa, S. J., & Varesche, A. M. B. (2014). Development and validation of two methods to quantify volatile acids (C2-C6) by GC/FID: headspace (automatic and manual) and liquid-liquid extraction (LLE). American Journal of Analytical Chemistry, 5, 406–414.

    Article  Google Scholar 

  40. Michaud, S., Bernet, N., Buffière, P., & Delgenès, J. P. (2005). Use of the methane yield to indicate the metabolic behavior of methanogenic biofilms. Process Biochemistry, 40, 2751–2755.

    Article  CAS  Google Scholar 

  41. Gao, M., She, Z., & Jin, C. (2007). Performance evaluation of a mesophilic (37°C) upflow anaerobic sludge blanket reactor in treating distiller’s grains wastewater. Journal of Hazardous Materials, 141, 808–813.

    Article  CAS  Google Scholar 

  42. Michaud, S., Bernet, N., Buffière, P., Roustan, M., & Moletta, R. (2002). Technical note. Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors. Water Research, 36, 1385–1391.

    Article  CAS  Google Scholar 

  43. Akarsubasi, A. T., Ince, O., Oz, N. A., Kırda, R. B., & Ince, B. K. (2006). Evaluation of performance, acetoclastic methanogenic activity and archaeal composition of full-scale UASB reactors treating alcohol distillery wastewaters. Process Biochemistry, 41, 28–35.

    Article  CAS  Google Scholar 

  44. Silva, A. J., Hirasawa, J. S., Varesche, M. B., Foresti, E., & Zaiat, M. (2006). Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea. Anaerobe, Ecology/environmental microbiology, 12, 93–98.

    Article  CAS  Google Scholar 

  45. Pérez-García, M., Romero-García, L. I., Rodríguez-Cano, R., & Sales-Márquez, D. (2005a). High rate anaerobic thermophilic technologies for distillery wastewater treatment. Wat.Sci. Tech., 51(1), 191–198.

    Google Scholar 

  46. Pérez-García, M., Romero-García, L. I., Rodríguez-Cano, R., & Sales-Márquez, D. (2005b). Effect of the pH influent conditions in fixed film rectors for anaerobic thermophilic treatment of wine-distillery wastewater. Wat.Sci. Tech., 51(1), 183–189.

    Google Scholar 

  47. Wang, Y., Zhang, Y., Wang, J., & Meng, L. (2009). Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and Bioenergy, 33, 848–853.

    Article  CAS  Google Scholar 

  48. López, G. L. M., Pereda, R. I., Dewulf, J., Budde, J., Heiermann, M., & Vervaeren, H. (2014). Effect of liquid hot water pre-treatment on sugarcane press mud methane yield. Bioresource Technology, 169, 284–290.

    Article  Google Scholar 

  49. Pagés-Díaz, J., Westman, J., Taherzadeh, M. J., Pereda-Reyes, I., & Sárvári, I. H. (2015). Semi-continuous co-digestion of solid cattle slaughterhouse waste with other waste streams: interactions within the mixtures and methanogenic community structure. Chemical Engineering Journal, 273, 28–36.

    Article  Google Scholar 

  50. Pereda-Reyes, I., Pagés-Díaz, J., Sárvári, I. H. (2015). Anaerobic biodegradation of solid substrates from agro-industrial activities: slaughterhouse wastes and agro-wastes. In Biodegradation and bioremediation of polluted system: new advances and technologies. Ed: InTech. Croatia.

Download references

Acknowledgements

This research was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), Brazil, Project CAPES/MES-Cuba 117/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cabrera-Díaz.

Additional information

Highlights

• The anaerobic process performance in the treatment of raw vinasse in a combined system of two methanogenic reactors (UASB + APBR) was evaluated under different OLR.

• The sulphate to COD ratio was demonstrated to be of major relevance in the biogas quality.

• The combination of the two anaerobic methanogenic reactors clearly improved the process performance, as a result not only of a higher COD removal efficiency but also of a higher CH4 and a lower H2S content in comparison with the UASB operating as a stand-alone unit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera-Díaz, A., Pereda-Reyes, I., Oliva-Merencio, D. et al. Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor. Appl Biochem Biotechnol 183, 1127–1145 (2017). https://doi.org/10.1007/s12010-017-2488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2488-2

Keywords

Navigation