Skip to main content
Log in

Correlation of Conformational Changes and Protein Degradation with Loss of Lysozyme Activity Due to Chlorine Dioxide Treatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chlorine dioxide (ClO2) is a potent oxidizing agent used for the treatment of drinking water and decontamination of facilities and equipment. The purpose of this research is to elucidate the manner in which ClO2 destroys proteins by studying the effects of ClO2 on lysozyme. The degree of enzyme activity lost can be correlated to the treatment time and levels of the ClO2 used. Lysozyme activity was drastically reduced to 45.3% of original enzyme activity when exposed to 4.3 mM ClO2 in the sample after 3 h. Almost all activities were lost in 3 h after exposure to higher ClO2 concentrations of up to 16.8 and 21.9 mM. Changes in protein conformation and amount as a result of ClO2 treatment were determined using the Raman spectroscopy and gel electrophoresis. Raman shifts and the alteration of spectral features observed in the ClO2-treated lysozyme samples are associated with loss of the α-helix secondary structure, tertiary structure, and disulfide bond. Progressive degradation of the denatured lysozyme by increasing levels of chlorine dioxide was also observed in gel electrophoresis. Hence, ClO2 can effectively cause protein denaturation and degradation resulting in loss of enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gates, D. J. (1998). Applications of chlorine dioxide in drinking water. In B. Cobban (Ed.), The chlorine dioxide handbook, water disinfection series (pp. 55–71). Denver, CO: American Water Works Association.

  2. Rand, J. L., Hofmann, R., Alam, M. Z. B., Chauret, C., Cantwell, R., Andrews, R. C., et al. (2007). A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection. Water Research, 41, 1939–1948.

    Article  CAS  Google Scholar 

  3. Richardson, S. D., Rav-Acha, C., & Simpson, G. D. (2009). Chlorine dioxide chemistry, reactions, and disinfection by-products. In D. Gates, G. Ziglio, & K. Ozekin (Eds.), State of the science of chlorine dioxide in drinking water (pp. 21–49). Denver, CO: Water Research Foundation and Fondazione AMGA.

  4. Sultan, A., Bilal, M., Khan, S., & Hassan, Z. U. (2015). Effect of chlorine dioxide (Dutrion®) on growth performance, gut histomorphology, and pathogenic microbial count of meat type birds. Pakistan Veterinary Journal, 35, 183–187.

    CAS  Google Scholar 

  5. Foegeding, P. M., Hemstapat, V., & Giesbrecht, F. G. (1986). Chlorine dioxide inactivation of Bacillus and Clostridium spores. Journal of Food Science, 51, 197–201.

    Article  CAS  Google Scholar 

  6. Jeng, D. K., & Woodworth, A. G. (1990). Chlorine dioxide gas sterilization under square-wave conditions. Applied and Environmental Microbiology, 56, 514–519.

    CAS  Google Scholar 

  7. Chauret, C., Behmel, U., & Baribeau, H. (2009). Inactivation of microorganisms by chlorine dioxide. In D. Gates, G. Ziglio, & K. Ozekin (Eds.), State of the science of chlorine dioxide in drinking water (pp. 159–181). Denver, CO: Water Research Foundation and Fondazione AMGA.

  8. Friedline, A., Zachariah, M., Middaugh, A., Heiser, M., Khanna, N., Vaishampayan, P., et al. (2015). Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorines dioxide. AMB Express, 5, 24. doi:10.1186/s13568-015-0109-4 .Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398677/. Accessed November 16, 2016.

    Article  Google Scholar 

  9. Sobsey, M. D. (1989). Inactivation of health-related microorganisms in water by disinfection processes. Water Science and Technology, 21, 179–195.

    CAS  Google Scholar 

  10. Chen, Y. S. R., Sproul, O. J., & Rubin, A. J. (1985). Inactivation of Naegleria gruberi cysts by chlorine dioxide. Water Research, 19, 783–789.

    Article  CAS  Google Scholar 

  11. Sproul, O. J., Chen, Y. S. R., Engel, J. P., & Rubin, A. J. (1983). Comparison of chlorine and chlorine dioxide for inactivation of amoebic cyst. Environmental Technology, 4, 335–342.

    Article  CAS  Google Scholar 

  12. Chauret, C. P., Radziminski, C. Z., Lepuil, M., Creason, R., & Andrews, R. C. (2001). Chlorine dioxide inactivation of Cryptosporidium parvum oocysts and bacterial spore indicators. Applied and Environmental Microbiology, 67, 2993–3001.

    Article  CAS  Google Scholar 

  13. EPA Guidance Manual-Chlorine Dioxide, 1999. April 1. Available from: https://nepis.epa.gov/Exe/tiff2png.cgi/200022DF.PNG?-r+75+-g+7+D%3A%5CZYFILES%5CINDEX%20DATA%5C95THRU99%5CTIFF%5C00001304%5C200022DF.TIF. Accessed November 16, 2016

  14. Vaid, R., Linton, R. H., & Morgan, M. T. (2010). Comparison of inactivation of Listeria monocytogenes within a biofilm matrix using chlorine dioxide gas, aqueous chlorine dioxide and sodium hypochlorite treatments. Food Microbiology, 27, 979–984.

    Article  CAS  Google Scholar 

  15. Srinivasan, A., Bova, G., Ross, T., Mackie, K., Paquette, N., Merz, W., et al. (2003). A 17-month evaluation of a chlorine dioxide water treatment system to control legionella species in a hospital water supply. Infection Control and Hospital Epidemiology, 24, 575–579.

    Article  Google Scholar 

  16. Sidari, F. P., Stout, J. E., VanBriesen, J. M., Bowman, A. M., Grubb, D., Neuner, A., et al. (2004). Keeping legionella out of water systems. Journal of American Water Works Association, 96, 111–119.

    CAS  Google Scholar 

  17. Wu, V. C. H., & Kim, B. (2007). Effect of a simple chlorine dioxide method for controlling five foodborne pathogens, yeasts and molds on blueberries. Food Microbiology, 24, 794–800.

    Article  CAS  Google Scholar 

  18. Han, Y. (2001). Reduction of Listeria monocytogenes on green peppers (Capsicum annuum) by gaseous and aqueous chlorine dioxide and water washing, and its growth at 7 °C. Journal of Food Protection, 64, 1730–1738.

    Article  CAS  Google Scholar 

  19. Rodgers, S. L., Cash, J. N., Siddiq, M., & Ryser, E. T. (2004). A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. Journal of Food Protection, 67, 721–731.

    Article  CAS  Google Scholar 

  20. Park, S. H., & Kang, D. H. (2015). Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes. International Journal of Food Microbiology, 207, 103–108.

    Article  CAS  Google Scholar 

  21. U.S. FDA 2015. Part 173-Secondary Direct Food Additives Permitted in Food For Human Consumption. CFR-Code of Federal Regulations Title 21, 3, Sec. 173.300 Chlorine Dioxide. Available from: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=173.300. Accessed November 16, 2016.

  22. Noss, C. I., Hauchman, F. S., & Olivieri, V. P. (1986). Chlorine dioxide reactivity with proteins. Water Research, 20, 351–356.

    Article  CAS  Google Scholar 

  23. Benarde, M. A., Brewstersnow, W., Olivieri, V. P., & Davidson, B. (1967). Kinetics and mechanism of bacterial disinfection by chlorine dioxide. Applied Microbiology, 15, 257–265.

    CAS  Google Scholar 

  24. Ogata, N. (2007). Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues. Biochemistry, 46, 4898–4911.

    Article  CAS  Google Scholar 

  25. Ogata, N. (2012). Inactivation of influenza virus haemagglutinin by chlorine dioxide: oxidation of the conserved tryptophan 153 residue in the receptor-binding site. Journal of General Virology, 93, 2558–2563.

    Article  CAS  Google Scholar 

  26. Kortvelyesi, Z., & Gordon, G. (2004). Chlorite ion interference in the spectrophotometric measurement of chlorine dioxide. Journal of American Water Works Association, 96, 81–87.

    Google Scholar 

  27. Roller, S. D., Olivieri, V. P., & Kawata, K. (1980). Mode of bacterial inactivation by chlorine dioxide. Water Research, 14, 635–641.

    Article  CAS  Google Scholar 

  28. Young, S. B., & Setlow, P. (2003). Mechanism of killing Bacillus subtilis spores by hypochlorite and chlorine dioxide. Journal of Applied Microbiology, 95, 54–67.

    Article  CAS  Google Scholar 

  29. Stuart-Audette, M., Blouquit, Y., Faraggi, M., Sicard-Roselli, C., Houee-Levin, C., & Jolles, P. (2003). Re-evaluation of intramolecular long-range electron transfer between tyrosine and tryptophan in lysozymes. European Journal of Biochemistry, 270, 3565–3571.

    Article  CAS  Google Scholar 

  30. Hawkins, C. L., & Davies, M. J. (2001). Generation and propagation of radical reactions on proteins. Biochimica et Biophysica Acta, 1504, 196–219.

    Article  CAS  Google Scholar 

  31. Lewis, E. N., Qi, W., Kidder, L. H., Amin, S., Kenyon, S. M., & Blake, S. (2014). Combined dynamic light scattering and Raman spectroscopy approach for characterizing the aggregation of therapeutic proteins. Molecules, 19, 20889–20905.

    Article  Google Scholar 

  32. Miura, T., Takeuchi, H., & Harada, I. (1989). Tryptophan Raman bands sensitive to hydrogen bonding and side-chain conformation. Journal of Raman Spectroscopy, 20, 667–671.

    Article  CAS  Google Scholar 

  33. Sharma, V. K., & Sohn, M. (2012). Oxidation of amino acids, peptides, and proteins by chlorine dioxide. Implications for water treatment. In E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), Environmental chemistry for a sustainable world, vol. 2: remediation of air and water pollution (pp. 237–254). New York: Springer.

  34. Sharma, V. K., & Sohn, M. (2012a). Reactivity of chlorine dioxide with amino acids, peptides, and proteins. Environmental Chemistry Letters, 10, 255–264.

    Article  CAS  Google Scholar 

  35. Ison, A., Odeh, I. N., & Margerum, D. W. (2006). Kinetics and mechanisms of chlorine dioxide and chlorite oxidations of cysteine and glutathione. Inorganic Chemistry, 45, 8768–8775.

    Article  CAS  Google Scholar 

  36. Stewart, D. J., Napolitano, M. J., Bakhmutova-Albert, E. V., & Margerum, D. W. (2008). Kinetics and mechanisms of chlorine dioxide oxidation of tryptophan. Inorganic Chemistry, 47, 1639–1647.

    Article  CAS  Google Scholar 

  37. Navalon, S., Alvaro, M., & Garcia, H. (2009). Chlorine dioxide reaction with selected amino acids in water. Journal of Hazardous Materials, 164, 1089–1097.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank ICA Tri Nova, LLC, Newnan, for providing the precursor materials for the preparation of the chlorine dioxide gas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beng Guat Ooi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Fig. S1

(DOCX 141 kb)

Fig. S2

(DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooi, B.G., Branning, S.A. Correlation of Conformational Changes and Protein Degradation with Loss of Lysozyme Activity Due to Chlorine Dioxide Treatment. Appl Biochem Biotechnol 182, 782–791 (2017). https://doi.org/10.1007/s12010-016-2361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2361-8

Keywords

Navigation