Skip to main content

Advertisement

Log in

Population Genetic Structure and Marker Trait Associations Using Morphological, Phytochemical and Molecular Parameters in Habenaria edgeworthii—a Threatened Medicinal Orchid of West Himalaya, India

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Habenaria edgeworthii Hook. f. ex Collett is an important terrestrial orchid used in different Ayurvedic formulations. In the present study, variations among morphological, phytochemical and molecular markers were assessed. A significant difference was observed among populations using morphological traits. Inter-simple sequence repeat (ISSR) data revealed lower genetic diversity at population level (He = 0.207) as compared to species level (He = 0.334). Analysis of molecular variance (AMOVA) indicates 74 % variation among populations and 26 % within population. Tuber extracts showed significantly (p < 0.05) higher total phenolics and flavonoids among the populations. Antioxidant activity determined by 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and ferric reducing antioxidant power (FRAP) assays exhibited considerable antioxidant potential. Furthermore, the associations between molecular and morphological and phytochemical attributes were studied using multiple regression analysis (MRA). Several ISSR fragments were associated with some morphological and phytochemical traits. These ISSR fragments can be useful for breeding programme of the species when no other genetic information, such as linkage maps and quantitative trait loci, is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deva, S., & Naithni, H. B. (1986). The orchid flora of north west Himalaya. New Delhi, India: Print and Media Associate.

    Google Scholar 

  2. Velpandian, T., Mathur, P., Sengupta, S., & Gupta, S. K. (1998). Preventive effect of Chyavanprash against steroid induced cataract in the developing chick embryo. Phytotherapy Research, 12, 320–323.

    Article  Google Scholar 

  3. Jose, J. K., Kuttan, G., & Kuttan, R. (2001). Antitumour activity of Emblica officinalis. Journal of Ethnopharmacology, 75, 65–69.

    Article  CAS  Google Scholar 

  4. Hoossain, M. M. (2011). Therapeutic orchids: traditional uses and recent advances—an overview. Fitoterapia, 82, 102–140.

    Article  Google Scholar 

  5. Chinmay, R., Kumari, S., Dhar, B., Mohanty, R. C., & Singh, A. (2009). Pharmacognostical and phytochemical evaluation of rare and endangered Habenaria spp. (Riddhi and Vriddhi). Pharmacognosy Journal, 1, 94–102.

    Google Scholar 

  6. Inger, H., & Rodomiro, O. (2000). In situ and ex situ assessment of morphological and fruit variation in Scandinavian sweet cherry. Scientia Horticulturae, 85, 37–49.

    Article  Google Scholar 

  7. Hamrick, J. L., & Godt, M. J. W. (1996). Conservation genetics of endemic plant species. In C. Avise & J. L. Hamrick (Eds.), Conservation genetics case histories from nature (pp. 281–304). New York, USA: Chapman and Hall.

    Google Scholar 

  8. Virk, P. S., Zhu, J., Newbury, H. J., Bryan, G. J., Jackson, M. T., & Ford-Lloyd, B. V. (2000). Effectiveness of different classes of molecular markers for classifying and revealing variations in rice (Oryza sativa) germplasm. Euphytica, 112, 275–284.

    Article  CAS  Google Scholar 

  9. Jugran, A., Rawat, S., Dauthal, P., Mondal, S., Bhatt, I. D., & Rawal, R. S. (2013). Association of ISSR markers with some biochemical traits of Valeriana jatamansi Jones. Industrial Crops and Products, 44, 671–676.

    Article  CAS  Google Scholar 

  10. Bhattacharya, P., Kumaria, S., & Tandon, P. (2015). Applicability of ISSR and DAMD markers for phyto-molecular characterization and association with some important biochemical traits of Dendrobium nobile, an endangered medicinal orchid. Phytochemistry, 117, 306–316.

    Article  Google Scholar 

  11. Giri, L., Jugran, A., Rawat, S., Dhyani, P., Andola, H., Bhatt, I. D., Rawal, R. S., & Dhar, U. (2012). In vitro propagation, genetic and phytochemical assessment of Habenaria edgeworthii: an important Astavarga plant. Acta Physiologiae Plantarum, 34, 869–875.

    Article  Google Scholar 

  12. Rawat, S., Bhatt, I. D., & Rawal, R. S. (2011). Variation in total phenolic content and antioxidant potential of Hedychium spicatum Buch. Ham. Ex D. Don in west Himalaya, India. Journal of Food Composition and Analysis, 24, 574–579.

    Article  CAS  Google Scholar 

  13. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in Propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.

    CAS  Google Scholar 

  14. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  15. Yeh, F. C., Yang, R. C., Boyle, T. B. J., Ye, Z. H., & Mao, J. X. (1999). POPGENE version 1.32: the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre. Canada: University of Alberta.

    Google Scholar 

  16. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  Google Scholar 

  17. Miller, M.P. (1997). TFPGA (version 1.3): a Windows program for the analysis of allozyme and molecular population genetic data. www.marksgeneticssoftware.net/tfpga.htm.

  18. Wright, S. (1951). The genetical structure of populations. Annals of Eugenics, 15, 323–354.

    Article  CAS  Google Scholar 

  19. Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28, 2537–2539.

    Article  CAS  Google Scholar 

  20. Mantel, N. A. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.

    CAS  Google Scholar 

  21. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  Google Scholar 

  22. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611–2620.

    Article  CAS  Google Scholar 

  23. Surveswaran, S., Cai, Y., Corke, H., & Sun, M. (2007). Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chemistry, 102, 938–953.

    Article  CAS  Google Scholar 

  24. Govindrajan, R., Singh, D. P., & Rawat, A. K. S. (2007). High performance liquid chromatography method for the quantification of phenolics in ‘Chyavanprash’, a potent Ayurvedic drug. Journal of Pharmaceutical and Biomedical Research, 43, 527–532.

    Article  Google Scholar 

  25. Lutharia, D. L., & Mukhopadhyay, S. (2006). Influence of sample preparation on assay of phenolic acids from eggplant. Journal of Agricultural and Food Chemistry, 54, 41–47.

    Article  Google Scholar 

  26. Gobbo-Neto, L., & Lopes, N. P. (2007). Plantas medicinais: fatores de influencia no conteudo de metabolitos secundarios. Química Nova, 30, 374–381.

    Article  CAS  Google Scholar 

  27. Gharibi, S., Tabatabaei, B. E. S., Saeidi, G., & Goli, S. A. H. (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied Biochemistry and Biotechnology, 178(4), 796–809.

    Article  CAS  Google Scholar 

  28. Vats, S. (2016). Effect of initial temperature treatment on phytochemicals and antioxidant activity of Azadirachta indica A. Juss. Applied Biochemistry and Biotechnology, 178(3), 504–512.

    Article  CAS  Google Scholar 

  29. Jugran, A. K., Bahukhandi, A., Dhyani, P., Bhatt, I. D., Rawal, R. S., & Nandi, S. K. (2016). Impact of altitudes and habitats on valerenic acid, total phenolics, flavonoids, tannins, and antioxidant activity of Valeriana jatamansi. Applied Biochemistry and Biotechnology, 1–16.

  30. Hattemer, H. H. (1991). Measuring genetic variation. In G. Z. M. Muller-Starck (Ed.), Genetic variation in European populations of forest trees (pp. 2–20). Frankfurt am Main: JD Sauerlander’s Verlag.

    Google Scholar 

  31. Cai, X., Feng, Z., Zhang, X., Xu, W., Hou, B., & Ding, X. (2011). Genetic diversity and population structure of an endangered Orchid (Dendrobium loddigesii Rolfe) from China revealed by SRAP markers. Scientia Horticulturae, 129, 877–881.

    Article  Google Scholar 

  32. Li, A., Luo, Y., & Ge, S. (2002). A preliminary study on conservation genetics of an endangered orchid (Paphiopedilum micranthum) from southwestern China. Biochemical Genetics, 40, 195–201.

    Article  CAS  Google Scholar 

  33. George, S., Sharma, J., & Yadon, V. L. (2009). Genetic diversity of the endangered and narrow endemic Piperia yadonii (Orchidaceae) assessed with ISSR polymorphisms. The American Journal of Botany, 96, 2022–2030.

    Article  CAS  Google Scholar 

  34. Hamrick, J. L., & Godt, M. J. W. (1990). Allozyme diversity in plant species. In A. H. D. Brown, M. T. Clegg, A. L. Kahler, & B. S. Weir (Eds.), Plant population genetics, breeding and genetic resources (pp. 46–53). Sunderland, Massachusetts: Sinauer Associates, Inc.

    Google Scholar 

  35. Nybom, H., & Bartish, I. V. (2000). Effect of life history traits and sampling strategies on genetic diversity estimate obtained with RAPD markers in plants. Perspectives in Plant Ecology, 3, 93–114.

    Article  Google Scholar 

  36. Wallace, L. E. (2004). A comparison of genetic variation and structure in the allopolyploid Platanthera huronensis and its diploid progenitors, Platanthera aquilonis and Platanthera dilatata. Canadian Journal of Botany, 82, 244–252.

    Article  Google Scholar 

  37. Williams, N. H., & Dodson, C. H. (1972). Selective attraction of male euglossine bees to orchid floral fragrances and its importance in long distance pollen flow. Evolution, 26, 84–95.

    Article  Google Scholar 

  38. Rathcke, B. J., & Jules, E. S. (1993). Habitat fragmentation and plant-pollinator interaction. Current Science, 65, 273–277.

    Google Scholar 

  39. Slatkin, M. (1987). Gene flow and the geographic structure of natural population. Science, 236, 787–792.

    Article  CAS  Google Scholar 

  40. Chen, X. Y. (2000). Effects of habitat fragmentation on genetic structure of plant populations and implication s for the biodiversity conservation. Acta Ecologica Sinica, 20, 884–892.

  41. Slatkin, M. (1985). Gene flow in natural population. Annual Review of Ecology, Evolution, and Systematics, 16, 393–430.

    Article  Google Scholar 

  42. Pathak, P., Mahant, K. C., & Gupta, A. (2001). In vitro propagation as an aid to conservation and commercialization of Indian orchids: seed culture. In P. Pathak, R. N. Sehgal, N. Shekhar, M. Sharma, & A. Sood (Eds.), Orchids science and commerce (pp. 318–362). Dehradun, India: Bishen Singh Mahendra Pal Singh.

    Google Scholar 

  43. Van Treuren, R., Bulsma, R., van Delden, W., & Ouborg, N. J. (1991). The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity, 66, 181–189.

    Google Scholar 

  44. Hutchison, D. W., & Templetion, A. R. (1999). Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53, 1898–1914.

    Article  Google Scholar 

  45. Yang, Q., Fu, Y., Wang, Y. Q., Wang, Y., Zhang, W. H., Li, X. Y., & Zhang, J. (2014). Genetic diversity and differentiation in the critically endangered orchid (Amitostigma hemipilioides): implications for conservation. Plant Systematics and Evolution, 300, 871–879.

    Article  CAS  Google Scholar 

  46. Fajardo, C. G., de Almeida Vieira, F., & Molina, W. F. (2014). Interspecific genetic analysis of orchids in Brazil using molecular markers. Plant Systematics and Evolution. doi:10.1007/s00606-014-1009-9.

    Google Scholar 

  47. Qian, X., Wang, C., & Tian, M. (2013). Genetic diversity and population differentiation of Calanthe tsoongiana, a rare and endemic orchid in China. International Journal of Molecular Sciences, 14, 20399–20413.

    Article  Google Scholar 

  48. Da Cruz, D. T., Selbach-Schnadelbach, A., Lambert, S. M., Ribeiro, P. L., & Borba, E. L. (2011). Genetic and morphological variability in Cattleya elongata Barb. Rodr. (Orchidaceae), endemic to the campo rupestre vegetation in northeastern Brazil. Plant Systematics and Evolution, 294, 87–98.

    Article  Google Scholar 

  49. Yao, X. H., Gao, L., & Yang, B. (2007). Genetic diversity of wild Cymbidium goeringii (Orchidaceae) populations from Hubei based on inter-simple sequence repeats analysis. Frontiers of Biology in China, 2, 419–424.

    Article  Google Scholar 

  50. Ma, J. M., & Yin, S. H. (2009). Genetic diversity of Dendrobium fimbriatum (Orchidaceae), an endangered species, detected by inter-simple sequence repeat (ISSR). Acta Botanica Yunnanica, 31, 35–41.

    Article  CAS  Google Scholar 

  51. Wu, H. F., Li, Z. Z., & Huang, H. W. (2006). Genetic differentiation among natural populations of Gastro diaelata (Orchidaceae) in Hubei and germplasm assessment of the cultivated populations. Biodiversity Science, 14, 315–326.

    Article  Google Scholar 

  52. Barbosa, A. R., Silva-Pereira, V., & Borba, E. L. (2013). High genetic variability in self-incompatible myophilous Octomeria (Orchidaceae, Pleurothallidinae) species. Brazilian Journal of Botany, 36, 79–187.

    Article  Google Scholar 

  53. Huang, J. L., Li, S. Y., & Hu, H. (2014). ISSR and SRAP markers reveal genetic diversity and population structure of an endangered slipper orchid, Paphiopedilum micranthum (Orchidaceae). Plant Diversity and Resource, 36, 209–218.

    CAS  Google Scholar 

  54. Smith, J. L., Hunter, K. L., & Hunter, R. B. (2002). Genetic variation in the terrestrial orchid Tipularia discolor. Southeastern Naturalist, 1, 17–26.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. P.P. Dhyani, Director, G.B. Pant Institute of Himalayan Environment and Development, for providing necessary facilities and encouragement and all colleagues of the Biodiversity Conservation and Management Thematic Group for their support and help. Special thank is accorded to Dr. Sandeep Rawat for help in population structure analysis. Funding provided by the National Medicinal Plants Board (File no. Z.18017/187/Pr.GO/UA-01/2006-07) and DST-SERB (File no. SB/YS/LS-22/2014) is gratefully acknowledged. UD acknowledge the financial support of CSIR in the form of Emeritus Scientist Fellowship [21(0947)/13EMR-II)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indra D. Bhatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, L., Jugran, A.K., Bahukhandi, A. et al. Population Genetic Structure and Marker Trait Associations Using Morphological, Phytochemical and Molecular Parameters in Habenaria edgeworthii—a Threatened Medicinal Orchid of West Himalaya, India. Appl Biochem Biotechnol 181, 267–282 (2017). https://doi.org/10.1007/s12010-016-2211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2211-8

Keywords

Navigation