Skip to main content
Log in

Functional Characterization of a Marine Bacillus Esterase and its Utilization in the Stereo-Selective Production of D-Methyl Lactate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chiral lactic acid and its ester derivatives are crucial building blocks and platforms in the generation of high value-added drugs, fine chemicals and functional materials. Optically pure D-lactic acid and its ester derivatives cannot be directly generated from fermentation and are quite expensive. Herein, we identified, heterologously expressed and functionally characterized one Bacillus esterase BSE01701 from the deep sea of the Indian Ocean. Esterase BSE01701 could enzymatically resolve inexpensive racemic methyl lactate and generate chiral D-methyl lactate. The enantiomeric excess of desired chiral D-methyl lactate and the substrate conversion could reach over 99 % and 60 %, respectively, after process optimization. Notably, the addition of 60 % (v/v) organic co-solvent heptane could greatly improve both the enantiomeric excess of D-methyl lactate and the conversion. BSE01701 was a very promising marine microbial esterase in the generation of chiral chemicals in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gurung, N., Ray, S., Bose, S., & Rai, V. (2013). A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Research International, 2013, 1–19.

    Article  Google Scholar 

  2. Nguyen, L. A., He, H., & Pham-Huy, C. (2006). Chiral drugs: an overview. International Journal of Biomedical Science: IJBS, 2, 85–100.

    CAS  Google Scholar 

  3. Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Maciel, R. (2012). Poly-lactic acid synthesis for application in biomedical devices - a review. Biotechnology Advances, 30, 321–328.

    Article  CAS  Google Scholar 

  4. Li, Z. J., & Grant, D. J. W. (1997). Relationship between physical properties and crystal structures of chiral drugs. Journal of Pharmaceutical Sciences, 86, 1073–1078.

    Article  CAS  Google Scholar 

  5. Yamane, H., & Sasai, K. (2003). Effect of the addition of poly(D-lactic acid) on the thermal property of poly(L-lactic acid). Polymer, 44, 2569–2575.

    Article  CAS  Google Scholar 

  6. Gao, K., Song, Q., & Wei, D. (2006). Coupling of enantioselective biooxidation of DL-1,2-propanediol and bioreduction of pinacolone via regeneration cycle of coenzyme. Applied Microbiology and Biotechnology, 71, 819–823.

    Article  CAS  Google Scholar 

  7. Datta, R., & Henry, M. (2006). Lactic acid: recent advances in products, processes and technologies - a review. Journal of Chemical Technology & Biotechnology, 81, 1119–1129.

    Article  CAS  Google Scholar 

  8. Gao, C., Qiu, J. H., Li, J. C., Ma, C. Q., Tang, H. Z., & Xu, P. (2009). Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM. Bioresource Technology, 100, 1878–1880.

    Article  CAS  Google Scholar 

  9. Su, W., Chang, Z., Gao, K., & Wei, D. (2004). Enantioselective oxidation of racemic 1,2-propanediol to D-(−)-lactic acid by Gluconobacter oxydans. Tetrahedron: Asymmetry, 15, 1275–1277.

    Article  CAS  Google Scholar 

  10. Woodley, J. M. (2006). Choice of biocatalyst form for scalable processes. Biochemical Society Transactions, 34, 301–303.

    Article  CAS  Google Scholar 

  11. Richard, G., Nott, K., Nicks, F., Paquot, M., Blecker, C., & Fauconnier, M.-L. (2013). Use of lipases for the kinetic resolution of lactic acid esters in heptane or in a solvent free system. Journal of Molecular Catalysis B: Enzymatic, 97, 289–296.

    Article  CAS  Google Scholar 

  12. Kennedy, J., Marchesi, J. R., & Dobson, A. D. (2008). Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microbial Cell Factories, 7, 1–8.

    Article  Google Scholar 

  13. van den Burg, B. (2003). Extremophiles as a source for novel enzymes. Current Opinion in Microbiology, 6, 213–218.

    Article  Google Scholar 

  14. Liang, J., Zhang, Y., Sun, A., Deng, D. and Hu, Y. (2015). Enantioselective resolution of (±)-1-phenylethanol and (±)-1-phenylethyl acetate by a novel esterase from Bacillus sp. SCSIO 15121. Applied Biochemistry and Biotechnology.

  15. Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785–786.

    Article  CAS  Google Scholar 

  16. Nam, J. K., Park, Y. J., & Lee, H. B. (2013). Cloning, expression, purification, and characterization of a thermostable esterase from the archaeon Sulfolobus solfataricus P1. Journal of Molecular Catalysis B: Enzymatic, 94, 95–103.

    Article  CAS  Google Scholar 

  17. Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  18. Chen, C. S., Fujimoto, Y., Girdaukas, G., & Sih, C. J. (1982). Quantitative analyses of biochemical kinetic resolution of enantiomers. Journal of the American Chemical Society, 104, 7294–7299.

    Article  CAS  Google Scholar 

  19. Singh, G., Kumar, A., Arya, S., Gupta, U. D., Singh, K., & Kaur, J. (2016). Characterization of a novel esterase Rv1497 of Mycobacterium tuberculosis H37Rv demonstrating β-lactamase activity. Enzyme and Microbial Technology, 82, 180–190.

    Article  CAS  Google Scholar 

  20. Wang, G., Wang, Q., Lin, X., Ng, T. B., Yan, R., Lin, J. and Ye, X. (2016). A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp SL3 from the sediment of a soda lake. Scientific Reports, 6.

  21. Xin, Y., Sun, Z. B., Chen, Q. Z., Wang, J., Wang, Y. C., Luogong, L. F., Li, S. H., Dong, W. L., Cui, Z. L., & Huang, Y. (2015). Purification and characterization of a novel extracellular thermostable alkaline protease from Streptomyces sp M30. Journal of Microbiology and Biotechnology, 25, 1944–1953.

    Article  CAS  Google Scholar 

  22. Bae, S.-W., Eom, D., Mai, N. L., & Koo, Y.-M. (2016). Refolding of horseradish peroxidase is enhanced in presence of metal cofactors and ionic liquids. Biotechnology Journal, 11, 464–472.

    Article  CAS  Google Scholar 

  23. Sriyapai, P., Kawai, F., Siripoke, S., Chansiri, K., & Sriyapai, T. (2015). Cloning, expression and characterization of a thermostable esterase HydS14 from Actinomadura sp. strain S14 in Pichia pastoris. International Journal of Molecular Sciences, 16, 13579–13594.

    Article  CAS  Google Scholar 

  24. Yang, W., He, Y., Xu, L., Zhang, H., & Yan, Y. (2016). A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: identification, characterization and application for biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 126, 76–89.

    Article  CAS  Google Scholar 

  25. Rao, L., Xue, Y., Zheng, Y., Lu, J. R., & Ma, Y. (2013). A novel alkaliphilic Bacillus esterase belongs to the 13th bacterial lipolytic enzyme family. PloS One, 8, e60645.

    Article  CAS  Google Scholar 

  26. Fucinos, P., Gonzalez, R., Atanes, E., Sestelo, A. B. F., Perez-Guerra, N., Pastrana, L., & Rua, M. L. (2012). Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27. Methods in molecular biology (Clifton, N.J.),, 861, 239–266.

    Article  CAS  Google Scholar 

  27. Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Rules for optimization of biocatalysis in organic-solvents. Biotechnology and Bioengineering, 30, 81–87.

    Article  CAS  Google Scholar 

  28. Xu, F. X., Chen, S. Y., Xu, G., Wu, J. P., & Yang, L. R. (2015). Discovery and expression of a Pseudomonas sp esterase as a novel biocatalyst for the efficient biosynthesis of a chiral intermediate of pregabalin. Biotechnology and Bioprocess Engineering, 20, 473–487.

    Article  CAS  Google Scholar 

  29. Kitaguchi, H., Fitzpatrick, P. A., Huber, J. E., & Klibanov, A. M. (1989). Enzymatic resolution of racemic amines: crucial role of the solvent. Journal of the American Chemical Society, 111, 3094–3095.

    Article  CAS  Google Scholar 

  30. Smith, M. E., Banerjee, S., Shi, Y. L., Schmidt, M., Bornscheuer, U. T., & Masterson, D. S. (2012). Investigation of the cosolvent effect on six isoenzymes of PLE in the enantioselective hydrolysis of selected a,a-disubstituted malonate esters. ChemCatChem, 4, 472–475.

    Article  CAS  Google Scholar 

  31. Tofani, G., Petri, A., & Piccolo, O. (2015). Preparation of enantiomerically pure N-heterocyclic amino alcohols by enzymatic kinetic resolution. Tetrahedron: Asymmetry, 26, 638–643.

    Article  CAS  Google Scholar 

  32. Wiśniewska, C., Koszelewski, D., Zysk, M., & Ostaszewski, R. (2015). The influence of cosolvent concentration on enzymatic kinetic resolution of trans-2-phenyl-cyclopropane-1-carboxylic acid derivatives. Biocatalysis and Biotransformation, 33, 98–104.

    Article  Google Scholar 

  33. Zheng, R. C., Zheng, Y. G., Li, A. P., & Li, X. J. (2014). Enantioselective synthesis of (S)-3-cyano-5-methylhexanoic acid by a high DMSO concentration tolerable Arthrobacter sp. ZJB-09277. Biochemical Engineering Journal, 83, 97–103.

    Article  CAS  Google Scholar 

  34. Kim, G.-J., Choi, G.-S., Kim, J.-Y., Lee, J.-B., Jo, D.-H., & Ryu, Y.-W. (2002). Screening, production and properties of a stereospecific esterase from Pseudomonas sp. S34 with high selectivity to (S)-ketoprofen ethyl ester. Journal of Molecular Catalysis B: Enzymatic, 17, 29–38.

    Article  CAS  Google Scholar 

  35. Zheng, G.-W., Yu, H.-L., Zhang, J.-D., & Xu, J.-H. (2009). Enzymatic production of l-menthol by a high substrate concentration tolerable esterase from newly isolated Bacillus subtilis ECU0554. Advanced Synthesis & Catalysis, 351, 405–414.

    Article  CAS  Google Scholar 

  36. Chen, Y., Xu, J. H., Pan, J., Xu, Y., & Shi, J. B. (2004). Catalytic resolution of (RS)-HMPC acetate by immobilized cells of Acinetobacter sp CGMCC 0789 in a medium with organic cosolvent. Journal of Molecular Catalysis B: Enzymatic, 30, 203–208.

    Article  CAS  Google Scholar 

  37. Zheng, J.-y., Wang, Y.-q., Luo, W.-f., Zhou, S.-s., Zhu, Q., Ying, X.-x., & Wang, Z. (2015). Biocatalytic resolution of Boc-DL-alanine methyl ester by a newly isolated Bacillus amyloliquefaciens WZZ002. Catalysis Communications, 60, 134–137.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial supports from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030404), National Natural Science Foundation of China (No. 21302199), Guangzhou Science and Technology Plan Projects (201510010012) and Key Project “Engineering High-Performance Microorganisms for Advanced Bio-Based Manufacturing” from the Chinese Academy of Sciences (KGZD-EW-606). We also would like to thank for the constant help from Professor Jianhua Ju and Professor Changsheng Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Hu.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhang, Y. & Hu, Y. Functional Characterization of a Marine Bacillus Esterase and its Utilization in the Stereo-Selective Production of D-Methyl Lactate. Appl Biochem Biotechnol 180, 1467–1481 (2016). https://doi.org/10.1007/s12010-016-2180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2180-y

Keywords

Navigation