Skip to main content

Advertisement

Log in

Enhancing l-Lysine Production of Beet Molasses by Engineered Escherichia coli Using an In Situ Pretreatment Method

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Reducing the viscosity of molasses environmentally and selectively removing the harmful ingredients for microbes are the keys to promoting the bioavailability of molasses. A simple and environmental in situ pretreatment method integrating surfactants and alkali was developed to reduce the viscosity of molasses prior to l-lysine production using Escherichia coli ZY0217. Adding activated carbon and modified orange peel based on the in situ pretreatment process effectively removed pigments and excessive zinc in the molasses and also significantly increased the cell growth and l-lysine yield from E. coli ZY0217. The experimental results showed that a mixture of secondary alkane sulfonate, an anionic surfactant, and HodagCB-6, a non-ionic surfactant, effectively reduced the viscosity of the molasses more so than any single surfactant. When the surfactant mixture was added at a concentration of 0.04 g/L to the molasses, the ω value was 0.4, and when ammonia was added at 0.6 %, the lowest viscosity of 705 mPa · s was obtained. Further, 91.5 % of the color and 86.68 % of the original levels of zinc were removed using an activated carbon and modified orange peel treatment on the molasses with the lowest viscosity, which further promoted cell growth and l-lysine production. In the fed-batch cultivation process, the l-lysine concentration achieved using a constant-speed feeding strategy was 45.89 g/L, with an l-lysine yield of 27.18 %, whereas the l-lysine yield from untreated molasses was only 10.13 %. The increase in l-lysine yield was related to the reduced viscosity and the detoxification of the molasses. Lastly, the pretreatment was found to significantly enhance the conversion of sugars in the molasses to l-lysine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. He, X., Chen, K. Q., Li, Y., Wang, Z., Zhang, H., Qian, J., & Ouyang, P. K. (2015). Enhanced L-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation. Bioprocess and Biosystems Engineering, 38, 1615–1622.

    Article  CAS  Google Scholar 

  2. Xu, K., & Xu, P. (2014). Efficient production of L-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresource Technology, 153, 23–29.

    Article  CAS  Google Scholar 

  3. Chan, S., Kanchanatawee, S., & Jantama, K. (2012). Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli. Bioresource Technology, 103, 329–336.

    Article  CAS  Google Scholar 

  4. Park, S. C., & Baratti, J. (1991). Batch fermentation kinetics of sugar beet molasses by Zymomonas mobilis. Biotechnology and Bioengineering, 38, 304–313.

    Article  CAS  Google Scholar 

  5. Abadias, M., Teixido, N., Usall, J., Vinas, I., & Magan, N. (2000). Solute stresses affect growth patterns, endogenous water potentials and accumulation of sugars and sugar alcohols in cells of the biocontrol yeast Candida sake. Journal of Applied Microbiology, 89, 1009–1017.

    Article  CAS  Google Scholar 

  6. Paula, F. S., Susan, G. K., Júlio, C. C., Wilerson, S., José, A. R. L., Jean, L. T., Reeta, R. S., Ashok, P., & Carlos, R. S. (2008). Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. Bioresource Technology, 99, 8156–8163.

    Article  Google Scholar 

  7. Togrul, H., & Arslan, N. (2004). Mathematical model for prediction of apparent viscosity of molasses. Journal of Food Engineering, 62, 281–289.

    Article  Google Scholar 

  8. Kaur, S., Kaler, R. S. S., & Aamarpali, A. (2002). Effect of starch on the rheology of molasses. Journal of Food Engineering, 55, 319–322.

    Article  Google Scholar 

  9. Roukas, T. (1998). Pretreatment of beet molasses to increase pullulan production. Process Biochemistry, 33, 805–810.

    Article  CAS  Google Scholar 

  10. Faruk, K., Hande, K., Dilvin, G., Ilaria, F., Annarita, P., Orhan, Y., Barbara, N., & Ebru, T. Ö. (2011). Molasses as fermentation substrate for levan production by Halomonas sp. Applied Microbiology and Biotechnology, 89, 1729–1740.

  11. Marty, R. J., & Demeyer, D. I. (1973). The effect of inhibitors of methane production on fermentation pattern and stoichiometry in vitro using rumen contents from sheep given molasses. The British Journal of Nutrition, 30, 369–376.

    Article  CAS  Google Scholar 

  12. Chen, K. Q., He, X., Zhang, H., Qi, Y. B., & Ouyang, P. K. A novel composite viscosity reducer and its application in the reducing the molasses viscosity. China Patent No. 201510773321.X.

  13. Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Yue, Q. Y., Li, Q., & Nguyen, T. V. (2013). Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresource Technology, 148, 574–585.

    Article  CAS  Google Scholar 

  14. Ying, H. X., He, X., Li, Y., Chen, K. Q., & Ouyang, P. K. (2014). Optimization of culture conditions for enhanced lysine production using engineered Escherichia coli. Applied Biochemistry and Biotechnology, 172, 3835–3843.

    Article  CAS  Google Scholar 

  15. Saurina, J., Hernandez-Cassou, S., Alegret, S., & Fabregas, E. (1999). Amperometric determination of lysine using a lysine oxidase biosensor based on rigid-conducting composites. Biosensors and Bioelectronics, 14, 211–220.

    Article  CAS  Google Scholar 

  16. Dubois, M. A., Gilles, K. A., Hamilton, J. K., Robers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  17. Liu, Q., Dong, M. Z., Ma, S. Z., & Tu, Y. (2007). Surfactant enhanced alkaline flooding for Western Canadian heavy oil recovery. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 293, 63–71.

    CAS  Google Scholar 

  18. Zengin, H., & Erkan, B. (2009). Adsorption of acids and bases from aqueous solutions onto silicon dioxide particles. Journal of Hazardous Materials, 172, 978–985.

    Article  CAS  Google Scholar 

  19. Nitschke, M., & Costa, S. G. (2007). Biosurfactants in food industry. Trends in Food Science & Technology, 18, 252–259.

    Article  CAS  Google Scholar 

  20. Garti, N., Clement, V., Fanun, M., & Leser, M. E. (2000). Some characteristics of sugar ester nonionic microemulsions in view of possible food applications. Journal of Agricultural and Food Chemistry, 48, 3945–3956.

    Article  CAS  Google Scholar 

  21. Chortyk, O. T., Kays, S. J., & Teng, Q. (1997). Characterization of insecticidal sugar esters of petunia. Journal of Agricultural and Food Chemistry, 45, 270–275.

    Article  CAS  Google Scholar 

  22. Claudia, B., Andres, I., & Lorena, W. (2015). Improvement of efficiency in the enzymatic synthesis of Lactulose Palmitate. Journal of Agricultural and Food Chemistry, 63, 3716–3724.

    Article  Google Scholar 

  23. Song, D. D., Li, Y. M., Liang, S. K., & Wang, J. T. (2013). Micelle behaviors of sophorolipid/rhamnolipid binary mixed biosurfactant systems. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 436, 201–206.

    CAS  Google Scholar 

  24. Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., & Mehranian, M. (2006). Empirical modeling of olive oil mill wastewater treatment using loofa-immobilized Phanerochaete chrysosporium. Process Biochemistry, 41, 1148–1154.

    Article  CAS  Google Scholar 

  25. Gilston, B. A., Wang, S. N., Marcus, M. D., Canalizo-Hernández, M. A., Swindell, E. P., Xue, Y., Mondragón, A., & O’Halloran, T. V. (2014). Structural and mechanistic basis of zinc regulation across the E. coli Zur Regulon. PLOS Biology, 12, e1001987.

    Article  Google Scholar 

  26. Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51, 730–750.

    Article  CAS  Google Scholar 

  27. Takahashi, H., Oshima, T., Hobman, J. L., Doherty, N., Clayton, S. R., Iqbal, M., Hill, P. J., Tobe, T., Ogasawara, N., Kanaya, S., & Stekel, D. J. (2015). The dynamic balance of import and export of zinc in Escherichia coli suggests a heterogeneous population response to stress. Journal of the Royal Society Interface, 12, 20150069.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “863” program of China (Grant Nos. 2015AA021005, 2014AA021703) and Guangxi Science and Technology Development Program (Grant No. 1598004-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kequan Chen.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Qi, Y., Chen, K. et al. Enhancing l-Lysine Production of Beet Molasses by Engineered Escherichia coli Using an In Situ Pretreatment Method. Appl Biochem Biotechnol 179, 986–996 (2016). https://doi.org/10.1007/s12010-016-2045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2045-4

Keywords

Navigation