Skip to main content
Log in

DREAM Assay for Studying Microbial Electron Transfer

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Methylene blue undergoes reduction with an accompanying colour change reaction, from blue to colourless, enabling its use as a metric for estimating reducing power. A dye reduction-based electron-transfer activity monitoring (DREAM) assay is demonstrated as a tool to study and understand the process of microbes sourcing electrons from organic substrates and transferring them to an electron acceptor. The rate at which electrons can be transferred to the thermodynamically most feasible electron acceptor directly depends on the activity of microbes. Nature of available substrate determines the quantum of electrons available. Dissolved oxygen intercepts electrons from the microbes before they can be taken up by the dye. Sodium sulfite can be used to offset the detrimental effects of the presence of dissolved oxygen. This easy-to-perform assay has been demonstrated as a proof-of-concept having potential to be extended to other practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MFC:

Microbial fuel cell

A600 :

Absorbance at 600 nm

A660 :

Absorbance at 660 nm

References

  1. Berney, M., Vital, M., Hülshoff, I., Weilenmann, H.-U., Egli, T., & Hammes, F. (2008). Rapid, cultivation-independent assessment of microbial viability in drinking water. Water Research, 42(14), 4010–4018. doi:10.1016/j.watres.2008.07.017.

    Article  CAS  Google Scholar 

  2. Breeuwer, P., & Abee, T. (2000). Assessment of viability of microorganisms employing fluorescence techniques. International Journal of Food Microbiology, 55(1–3), 193–200.

    Article  CAS  Google Scholar 

  3. Nandy, S., & Venkatesh, K. (2010). Application of methylene blue dye reduction test (MBRT) to determine growth and death rates of microorganisms. African Journal of Microbiology Research, 4(1), 61–70.

    CAS  Google Scholar 

  4. Gurramkonda, C., Mupparapu, K., Abouzeid, R., Kostov, Y., & Rao, G. (2014). Fluorescence-based method and a device for rapid detection of microbial contamination. PDA Journal of Pharmaceutical Science and Technology, 68(2), 164–171. doi:10.5731/pdajpst.2014.00951.

    Article  Google Scholar 

  5. Thornton, H., & Hastings, E. (1930). Studies on oxidation-reduction in milk: the methylene blue reduction test. Journal of Dairy Science, 13(3), 221–245.

    Article  CAS  Google Scholar 

  6. Bapat, P., Nandy, S., Wangikar, P., & Venkatesh, K. (2006). Quantification of metabolically active biomass using methylene blue dye reduction test (MBRT): measurement of CFU in about 200 s. Journal of Microbiological Methods, 65(1), 107–116. doi:10.1016/j.mimet.2005.06.010.

    Article  CAS  Google Scholar 

  7. Ahmad, I., & Jindal, V. K. (2006). An automatic procedure for rapid online estimation of raw milk quality. LWT - Food Science and Technology, 39(4), 432–436. doi:10.1016/j.lwt.2005.02.010.

    Article  CAS  Google Scholar 

  8. Lee, Y.-G., Wu, H.-Y., Hsu, C.-L., Liang, H.-J., Yuan, C.-J., & Jang, H.-D. (2009). A rapid and selective method for monitoring the growth of coliforms in milk using the combination of amperometric sensor and reducing of methylene blue. Sensors and Actuators B: Chemical, 141(2), 575–580. doi:10.1016/j.snb.2009.06.028.

    Article  CAS  Google Scholar 

  9. Edison, T. J. I., & Sethuraman, M. G. (2012). Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochemistry, 47, 1351–1357. doi:10.1016/j.procbio.2012.04.025.

    Article  CAS  Google Scholar 

  10. Vinderola, C., Costa, G., Regenhardt, S., & Reinheimer, J. (2002). Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. International Dairy Journal, 12(7), 579–589.

    Article  CAS  Google Scholar 

  11. Chen, B. (2002). Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochemistry, 38, 437–446.

    Article  CAS  Google Scholar 

  12. Brigé, A., Motte, B., Borloo, J., Buysschaert, G., Devreese, B., & Van Beeumen, J. J. (2008). Bacterial decolorization of textile dyes is an extracellular process requiring a multicomponent electron transfer pathway. Microbial Biotechnology, 1(1), 40–52. doi:10.1111/j.1751-7915.2007.00005.x.

    Google Scholar 

  13. Pandey, A., Singh, P., & Iyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. International Biodeterioration & Biodegradation, 59(2), 73–84. doi:10.1016/j.ibiod.2006.08.006.

    Article  CAS  Google Scholar 

  14. Hong, Y.-G., & Gu, J.-D. (2010). Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain. Applied Microbiology and Biotechnology, 88(3), 637–643. doi:10.1007/s00253-010-2820-z.

    Article  CAS  Google Scholar 

  15. Cao, Y., Hu, Y., Sun, J., & Hou, B. (2010). Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell. Bioelectrochemistry, 79(1), 71–76. doi:10.1016/j.bioelechem.2009.12.001.

    Article  CAS  Google Scholar 

  16. Solanki, K., Subramanian, S., & Basu, S. (2013). Microbial fuel cells for azo dye treatment with electricity generation: a review. Bioresource Technology, 131, 564–571. doi:10.1016/j.biortech.2012.12.063.

    Article  CAS  Google Scholar 

  17. Sund, C. J., McMasters, S., Crittenden, S. R., Harrell, L. E., & Sumner, J. J. (2007). Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Applied Microbiology and Biotechnology, 76(3), 561–568. doi:10.1007/s00253-007-1038-1.

    Article  CAS  Google Scholar 

  18. Berg, J., Tymoczko, J., & Stryer, L. (2002). Biochemistry (5th ed., ). New York: W H Freeman.

    Google Scholar 

  19. Stams, A. J. M., de Bok, F. A. M., Plugge, C. M., van Eekert, M. H. A., Dolfing, J., & Schraa, G. (2006). Exocellular electron transfer in anaerobic microbial communities. Environmental Microbiology, 8(3), 371–382. doi:10.1111/j.1462-2920.2006.00989.x.

    Article  CAS  Google Scholar 

  20. Chang, J., & Kuo, T.-S. (2000). Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresource Technology, 75(2), 107–111. doi:10.1016/S0960-8524(00)00049-3.

    Article  CAS  Google Scholar 

  21. APHA (1998). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation.

    Google Scholar 

  22. Hui, P., & Palmer, H. (1991). Uncatalyzed oxidation of aqueous sodium sulfite and its ability to simulate bacterial respiration. Biotechnology and Bioengineering, 37, 392–396.

    Article  CAS  Google Scholar 

  23. Babich, H., & Stotzky, G. (1978). Influence of pH on inhibition of bacteria, fungi, and coliphages by bisulfite and sulfite. Environmental Research, 15(3), 405–417.

    Article  CAS  Google Scholar 

  24. Alfonta, L. (2010). Genetically engineered microbial fuel cells. Electroanalysis, 22(7–8), 822–831. doi:10.1002/elan.200980001.

    Article  CAS  Google Scholar 

  25. Song, T.-S., Cai, H.-Y., Yan, Z.-S., Zhao, Z.-W., & Jiang, H.-L. (2012). Various voltage productions by microbial fuel cells with sedimentary inocula taken from different sites in one freshwater lake. Bioresource Technology, 108, 68–75. doi:10.1016/j.biortech.2011.11.136.

    Article  CAS  Google Scholar 

  26. Kannan, N., & Sundaram, M. M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments. doi:10.1016/S0143-7208(01)00056-0.

    Google Scholar 

Download references

Acknowledgments

The authors dedicate this work to Bhagawan Sri Sathya Sai Baba, the founding chancellor of the Sri Sathya Sai Institute of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Vishwanathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwanathan, A.S., Devkota, R., Siva Sankara Sai, S. et al. DREAM Assay for Studying Microbial Electron Transfer. Appl Biochem Biotechnol 177, 1767–1775 (2015). https://doi.org/10.1007/s12010-015-1852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1852-3

Keywords

Navigation