Skip to main content
Log in

Molecular Cloning and Characterization of Spermine Synthesis Gene Associated with Cold Tolerance in Tea Plant (Camellia sinensis)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Spermine synthase (SPMS, EC 2.5.1.22), enzyme of spermine (Spm) biosynthesis, has been shown to be related to stress response. In this study, attempts were made to clone and characterize a gene encoding SPMS from tea plant (Camellia sinensis). The effect of exogenous application of Spm in C. sinensis subjected to low-temperature stress was also investigated. A full-length SPMS complementary DNA (cDNA) (CsSPMS) with an open reading frame of 1113 bp was cloned using reverse transcription-PCR and rapid amplification of cDNA ends (RACE) techniques from cultivar “Yingshuang”. The CsSPMS gene, which encoded a 371 amino acid polypeptide, in four cultivars is highly homologous. Quantitative real-time PCR indicated that the CsSPMS gene shows tissue-specific expression, mainly in the leaf and root of tea plant. The expression analysis demonstrated that the CsSPMS gene is quickly induced by cold stress and had similar trends in four cultivars. Spm-supplemented “Baicha” cultivar contains higher endogenous polyamines compared to the control, coupling with higher expression levels of ADC and SPMS. In addition, activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), as well as free proline content in the Spm-supplemented samples were higher than the control during the experiment course or at a given time point, indicating that Spm exerted a positive effect on antioxidant systems. Moreover, Agrobacterium-mediated expression of CsSPMS in tobacco leaves showed relatively higher cold tolerance. Taken together, these findings will enhance the understanding of the relationships among CsSPMS gene regulatory, polyamines accumulation, and cold tolerance in tea plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu, J., Verslues, P.E., Zheng, X., Lee, B., Zhan, X., Manabe, Y., Sokolchik, I., Zhu, Y., Dong, C.H., Zhu, J.K., Hasegawa, P.M., & Bressan, R.A. (2005). HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proceedings of the National Academy of the Sciences of the United States of America, 102, 9966–9971.

  2. Kaur-Sawhney, R., Tiburcio, A. F., Altabella, T., & Galston, A. W. (2003). Polyamines in plants: an overview. Journal of Cell & Molecular Biology, 2.

  3. Kusano, T., Berberich, T., Tateda, C., & Takahashi, Y. (2008). Polyamines: essential factors for growth and survival. Planta, 228, 367–381.

    Article  CAS  Google Scholar 

  4. Hanzawa, Y., Imai, A., Michael, A. J., Komeda, Y., & Takahashi, T. (2002). Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Letters, 527, 176–180.

    Article  CAS  Google Scholar 

  5. Imai, A., Akiyama, T., Kato, T., Sato, S., Tabata, S., Yamamoto, K. T., & Takahashi, T. (2004). Spermine is not essential for survival of Arabidopsis. FEBS Letters, 556, 148–152.

    Article  CAS  Google Scholar 

  6. Cohen, S. S. (1998). A guide to polyamines. New York:Oxford University Press.

    Google Scholar 

  7. Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I., & Tachibana, S. (2004). Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant and Cell Physiology, 45, 712–722.

    Article  CAS  Google Scholar 

  8. Marco, F., Busó, E., & Carrasco, P. (2014). Overexpression of SAMDC1 gene in Arabidopsis thaliana increases expression of defense-related genes as well as resistance to Pseudomonas syringae and Hyaloperonospora arabidopsidis. Frontiers in Plant Science, 5, 115.

    Article  Google Scholar 

  9. Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Takahashi, T., Michael, A., & Kusano, T. (2007). A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochemical and Biophysical Research Communications, 352, 486–490.

    Article  CAS  Google Scholar 

  10. Gonzalez, M. E., Marco, F., Minguet, E. G., Carrasco-Sorli, P., Blázquez, M. A., Carbonell, J., Ruiz, O. A., & Pieckenstain, F. L. (2011). Perturbation of spermine synthase gene expression and transcript profiling provide new insights on the role of the tetraamine spermine in Arabidopsis defense against Pseudomonas viridiflava. Plant Physiology, 156, 2266–2277.

    Article  CAS  Google Scholar 

  11. Sagor, G. H. M., Berberich, T., Takahashi, Y., Niitsu, M., & Kusano, T. (2013). The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Research, 22, 595–605.

    Article  CAS  Google Scholar 

  12. Tanou, G., Ziogas, V., Belghazi, M., Christou, A., Filippou, P., Job, D., Fotopoulos, V., & Molassiotis, A. (2014). Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell and Environment, 37, 864–885.

    Article  CAS  Google Scholar 

  13. Shi, J., Fu, X. Z., Peng, T., Huang, X. S., Fan, Q. J., & Liu, J. H. (2010). Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiology, 30, 914–922.

    Article  CAS  Google Scholar 

  14. Kakkar, R. K., & Nagar, P. K. (1997). Distribution and changes in endogenous polyamines during winter dormancy in tea [Camellia sinensis L. (O) Kutze]. Journal of Plant Physiology, 151, 63–67.

    Article  CAS  Google Scholar 

  15. Brückner, H., Flassig, S., & Kirschbaum, J. (2012). Determination of biogenic amines in infusions of tea (Camellia sinensis) by HPLC after derivatization with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Amino Acids, 42, 877–885.

    Article  Google Scholar 

  16. Dhindsa, R., Plumb-Dhindsa, P., & Thorpe, T. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93–101.

    Article  CAS  Google Scholar 

  17. Rensburg, L. V., Krüger, G. H. J., & Krüger, H. (1993). Proline accumulation as drought-tolerance selection criterion: its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. Journal of Plant Physiology, 141, 188–194.

    Article  Google Scholar 

  18. Alsaadawi, I. S., Al-Hadithy, S. M., & Arif, M. B. (1986). Effects of three phenolic acids on chlorophyll content and ions uptake in cowpea seedlings. Journal of Chemistry Ecology, 12, 221–227.

    Article  CAS  Google Scholar 

  19. Naka, Y., Watanabe, K., Sagor, G. H. M., Niitsu, M., Pillai, M. A., Kusano, T., & Takahashi, Y. (2010). Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiology and Biochemistry, 48, 527–533.

    Article  CAS  Google Scholar 

  20. Jiang, M. Y., & Zhang, J. H. (2002). Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulated the activities of antioxidant enzymes in the maize leaves. Journal of Experimental Botany, 53, 2401–2410.

    Article  CAS  Google Scholar 

  21. Ranieri, A., Castagna, A., Baldan, B., & Soldatini, G. F. (2001). Iron deficiency differently affects peroxidase isoforms in sunflower. Journal of Experimental Botany, 52, 25–35.

    Article  CAS  Google Scholar 

  22. Loenen, W. A. M. (2006). S-adenosylmethionine: jack of all trades and master of everything? Biochemical Society Transactions, 34, 330–333.

    Article  CAS  Google Scholar 

  23. Chiang, P. K., Gordon, R. K., Tal, J., Zeng, G. C., Doctor, B. P., Pardhasaradhi, K., & McCann, P. P. (1996). S-Adenosylmethionine and methylation. The FASEB Journal, 10, 471–480.

    CAS  Google Scholar 

  24. Gunes, A., Soylemezoglu, G., Inal, A., Bagci, E. G., Coban, S., & Sahin, O. (2006). Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Scientia Horticulturae, 110, 279–284.

    Article  CAS  Google Scholar 

  25. Lehmann, S., Funck, D., Szabados, L., & Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids, 39, 949–962.

    Article  CAS  Google Scholar 

  26. Liu, J. H., & Moriguchi, T. (2008). Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots. Environmental and Experimental Botany, 62, 28–35.

    Article  CAS  Google Scholar 

  27. Kasuga, M., Miura, S., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant and Cell Physiology, 45, 346–350.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31400584), the Fundamental Research Funds for the Central Universities (KJQN201545), the Earmarked Fund for Modern Agro-industry Technology Research System (CARS-23), Natural Science Foundation of Jiangsu Province (BK20140714), the Specialized Research Fund for the Doctoral Program of Higher Education (20130097120013), and Jiangsu Doctors Gather Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Li, Q., Hu, J. et al. Molecular Cloning and Characterization of Spermine Synthesis Gene Associated with Cold Tolerance in Tea Plant (Camellia sinensis). Appl Biochem Biotechnol 177, 1055–1068 (2015). https://doi.org/10.1007/s12010-015-1796-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1796-7

Keywords

Navigation