Skip to main content
Log in

Structural Characterization and Biological Activities of Polysaccharides from Olive Mill Wastewater

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Olive mill wastewater (OMWW), the main waste product of olive oil extraction process, was investigated as a source of polysaccharides. The yield of alcohol insoluble residue (AIR) was 20.5 % based on the dry matter of OMWW. Extraction with water gave water soluble (WSF) and insoluble (WIF) fractions from AIR with yields of 13.3 % (w/w) and 3.7 % (w/w) based on the dry matter, respectively. Chemical composition and monosaccharide analysis indicated that glucose was the main monosaccharide of these extracts in addition to galactose, arabinose, rhamnose, and galacturonic acid. Prebiotic and antioxidant activities of polysaccharidic fractions from OMWW were evaluated. Results gave evidence for their scavenging capacity toward the 2,2′-diphenyl-1-picrylhydrazyle (DPPH) (IC50 value of 89.43 μg/mL) and hydroxyl radicals (IC50 value of 158.70 μg/mL), resistance toward artificial human gastric juice, and ability to be fermented by Lactobacilli strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., & Michaud, P. (2013). Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochemistry, 48, 1532–1552.

    Article  CAS  Google Scholar 

  2. Roig, A., Cayuela, M. L., & Sanchez-Monedero, M. A. (2006). An overview on olive mill wastes and their valorization methods. Waste Management, 26, 960–969.

    Article  CAS  Google Scholar 

  3. Ramos, P., Santos, S. A. O., Guerra, A. R., Guerreiro, O., Felício, L., Jerónimo, E., Silvestre, A. J. D., Neto, C. P., & Duarte, M. (2013). Valorization of olive mill residues: antioxidant and breast cancer antiproliferative, activities of hydroxytyrosol-rich extracts derived from olive oil by-products. Industrial Crops and Products, 46, 359–368.

    Article  CAS  Google Scholar 

  4. Kessler, B., Weusthuis, R., Witholt, B., & Eggink, G. (2001). Production of microbial polyesters: fermentation and downstream processes. Advances in Biochemical Engineering/Biotechnology, 71, 159–182.

    Article  CAS  Google Scholar 

  5. Eroglu, E., Gunduz, U., Yucel, M., Turker, L., & Eroglu, I. (2004). Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. International Journal of Hydrogen Energy, 29(2), 163–171.

    Article  CAS  Google Scholar 

  6. Zenjari, B., El Hajjouji, H., Ait Baddi, G., Bailly, J. R., Revel, J. C., Nejmeddine, A., & Hafidi, M. (2006). Eliminating toxic compounds by composting olive mill wastewater-straw mixtures. Journal of Hazardous Materials, 138(3), 433–437.

    Article  CAS  Google Scholar 

  7. López, M. J., Moreno, J., & Ramos-Cormenzana, A. (2001). Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters. Water Research, 35, 1828–1830.

    Article  Google Scholar 

  8. Coimbra, M. A., Waldron, K. W., & Selvendran, R. R. (1994). Isolation and characterization of cell wall polymers from olive pulp (Olea europea L.). Carbohydrate Research, 252, 245–262.

    Article  CAS  Google Scholar 

  9. Jiménez, A., Guillén, R., Fernández-Bolaños, J., & Heredia, A. (1994). Cell wall composition of olives. Journal of Food Science, 59, 1192–1196.

    Article  Google Scholar 

  10. Coimbra, M. A., Barros, A., Rutledge, D. N., & Delgadillo, I. (1999). FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts. Carbohydrate Research, 317, 145–154.

    Article  CAS  Google Scholar 

  11. Vierhuis, E., Schols, H. A., Beldman, G., & Voragen, A. G. J. (2001). Structural characterization of xyloglucan and xylans present in olive fruit (Olea europaea cv koroneiki). Carbohydrate Polymers, 44, 51–62.

    Article  CAS  Google Scholar 

  12. Vierhuis, E., Korver, M., Schols, H. A., & Voragen, A. G. J. (2003). Structural characteristics of pectic polysaccharides from olive fruit (Olea europaea cv moraiolo) in relation to processing for oil extraction. Carbohydrate Polymers, 51, 135–148.

    Article  CAS  Google Scholar 

  13. Galanakis, C. M., Tornberg, E., & Gekas, V. (2010). A study of the recovery of the dietary fibres from olive mill wastewater and the gelling ability of the soluble fibre fraction. LWT- Food Science and Technology, 43, 1009–1017.

    Article  CAS  Google Scholar 

  14. Sawabe, Y., Nakagomi, K., Iwagami, S., Suzuki, S., & Nakazawa, H. (1992). Inhibitory effects of pectic substances on activated hyaluronidase and histamine release from mast cells. Biochimica et Biophysica Acta, 1137, 274–278.

    Article  CAS  Google Scholar 

  15. Nergard, C. S., Matsumoto, T., Inngjerdingen, M., Inngjerdingen, K., Hokputsa, S., Harding, S. E., Michaelsen, T. E., Diallo, D., Kiyohara, H., Paulsen, B. S., & Yamada, H. (2005). Structural and immunological studies of a pectin and a pecticarabinogalactan from Vernonia kotschyana Sch. Bip. exWalp. (Asteraceae). Carbohydrate Research, 340, 115–130.

    Article  CAS  Google Scholar 

  16. Brouns, F., Theuwissen, E., Adam, A., Bel, M., Berger, A., & Mensink, R. P. (2012). Cholesterol-lowering properties of different pectin types in mildly hypercholesterolemic men and women. European Journal of Clinical Nutrition, 66(5), 591–599.

    Article  CAS  Google Scholar 

  17. Inngjerdingen, K. T., Thöle, C., Diallo, D., Paulsen, B. S., & Hensel, A. (2014). Inhibition of Helicobacter pylori adhesion to human gastric adenocarcinoma epithelial cells by aqueous extracts and pectic polysaccharides from the roots of Cochlospermum tinctorium A. Rich. and Vernonia kotschyana Sch. Bip. ex Walp. Fitoterapia, 95, 127–132.

    Article  CAS  Google Scholar 

  18. Torralbo, D. F., Batista, K. A., Di-Medeiros, M. C. B., & Fernandes, K. F. (2012). Extraction and partial characterization of Solanum lycocarpum pectin. Food Hydrocolloids, 27, 378–383.

    Article  CAS  Google Scholar 

  19. Cárdenas, A., Goycoolea, F. M., & Rinaudo, M. (2008). On the gelling behaviour of ‘nopal’ (Opuntia ficus indica) low methoxyl pectin. Carbohydrate Polymers, 73, 212–222.

    Article  Google Scholar 

  20. Tamaki, Y., Konishi, T., Fukuta, M., & Tako, M. (2008). Isolation and structural characterisation of pectin from endocarp of Citrus depressa. Food Chemistry, 107, 352–361.

    Article  CAS  Google Scholar 

  21. Posé, S., Kirby, A. R., Mercado, J. A., Morris, V. J., & Quesada, M. A. (2012). Structural characterization of cell wall pectin fractions in ripe strawberry fruits using AFM. Carbohydrate Polymers, 88, 882–890.

    Article  Google Scholar 

  22. Douillard, F. P., Ribbera, A., Järvinen, H. M., Kant, R., Pietilä, T. E., Randazzo, C., Paulin, L., Laine, P. K., Caggia, C., von Ossowski, I., Reunanen, J., Satokari, R., Salminen, S., Palva, A., & de Vos, W. M. (2013). Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Applied and Environmental Microbiology, 79, 1923–1933.

    Article  CAS  Google Scholar 

  23. Monsigny, M., Petit, C., & Roche, A. C. (1988). Colorimetric determination of neutral sugars by a resorcinol sulphuric acid micro-method. Analytical Biochemistry, 175, 525–530.

    Article  CAS  Google Scholar 

  24. Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54, 484–489.

    Article  CAS  Google Scholar 

  25. Waffenschmidt, S., & Jaenicke, L. (1987). Assay of reducing sugars in the nanomole range with 2,2'-bicinchininate. Analytical Biochemistry, 165, 337–340.

    Article  CAS  Google Scholar 

  26. Bradford, H. M. (1976). A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  27. Hach, C. C., Brayton, S. V., & Kopelove, A. B. (1985). A powerful Kjeldahl nitrogen method using peroxymonosulfuric acid. Journal of Agricultural and Food Chemistry, 33, 1117–1123.

    Article  CAS  Google Scholar 

  28. Gutfinger, J. (1981). Polyphenols in olive oils. Journal of the American Chemical Society, 58, 966–968.

    CAS  Google Scholar 

  29. Delattre, C., Pierre, G., Gardarin, C., Traikia, M., Elboutachfaiti, R., Isogai, A., & Michaud, P. (2015). Antioxidant activities of a polyglucuronic acid sodium salt obtained from TEMPO-mediated oxidation of xanthan. Carbohydrate Polymers, 116, 34–41.

    Article  CAS  Google Scholar 

  30. Korakli, M., Ganzle, M. G., & Vogel, R. F. (2002). Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. Journal of Applied Microbiology, 92, 958–965.

    Article  CAS  Google Scholar 

  31. Vierhuis, E., Schols, H. A., Beldman, G., & Voragen, A. G. J. (2000). Isolation and characterization of cell wall material from olive fruit (Olea europaea cv koroneiki) at different ripening stages. Carbohydrate Polymers, 44, 51–62.

    Article  Google Scholar 

  32. Huisman, M. M. H., Schols, H. A., & Voragen, A. G. J. (1996). Changes in cell wall polysaccharides from ripening olive fruits. Carbohydrate Polymers, 31, 123–133.

    Article  CAS  Google Scholar 

  33. Cardoso, S. M., Coimbra, M. A., & Lopez da Silva, J. A. (2003). Calcium-mediated gelation of an olive pomace extract. Carbohydrate Polymers, 52, 125–133.

    Article  CAS  Google Scholar 

  34. Ralet, M. C., Thibault, J. F., Faulds, C. B., & Williamson, G. (1994). Isolation and purification of feruloylated oligosaccharides from cell-walls of sugar-beet pulp. Carbohydrate Research, 263, 227–241.

    Article  CAS  Google Scholar 

  35. Buanafina, O. (2009). Feruloylation in grasses: current and future perspectives. Molecular Plant, 2(5), 861–872.

    Article  CAS  Google Scholar 

  36. Ralet, M. C., André-Leroux, G., Quéméner, B., & Thibault, J. F. (2005). Sugar beet (Beta vulgaris) pectins are covalently cross-linked through diferulic bridges in the cell wall. Phytochemistry, 66, 2800–2814.

    Article  CAS  Google Scholar 

  37. Cardoso, S. M., Mafra, I., Reis, A., Nunes, C., Saraiva, J. A., & Coimbra, M. A. (2010). Naturally fermented black olives: effect on cell wall polysaccharides and on enzyme activities of Taggiasca and Conservolea varieties. LWT- Food Science and Technology, 43, 153–160.

    Article  CAS  Google Scholar 

  38. Coimbra, M. A., Barros, A., Barros, M., Rutledge, D. N., & Delgadillo, I. (1998). FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts. Carbohydrate Polymers, 37, 241–248.

    Article  CAS  Google Scholar 

  39. Jiménez, A., Rodríguez, R., Fernández-Caro, I., Guillén, R., Fernández-Bolanõs, J., & Heredia, A. (2001). Olive fruit cell wall: degradation of pectic polysaccharides during ripening. Journal of Agricultural and Food Chemistry, 49, 409–415.

    Article  Google Scholar 

  40. Araujo, A. J., Labavitch, J. M., & Moreno, A. H. (1994). Changes in the cell wall of olive fruit during processing. Journal of Agricultural and Food Chemistry, 42, 1194–1199.

    Article  CAS  Google Scholar 

  41. Selvendran, R. R., & O’Neil, M. A. (1987). Isolation and analysis of cell walls from plant material. Methods of Biochemical Analysis, 32, 25–153.

    Article  CAS  Google Scholar 

  42. Hayashi, T. (1989). Xyloglucans in the primary cell wall. Annual Review of Plant Physiology, 40, 139–168.

    Article  CAS  Google Scholar 

  43. Rollet-Labelle, E., Grange, M. J., Elbim, C., Marquetty, C., Gougerot-Pocidalo, M. A., & Pasquier, C. (1998). Hydroxyl radical as a potential intracellular mediator of polymorphonuclear neutrophil apoptosis. Free Radical Biology & Medicine, 24, 563–572.

    Article  CAS  Google Scholar 

  44. Xu, R., Ye, H., Sun, Y., Tu, Y., & Zeng, X. (2012). Preparation, preliminary characterization, antioxidant, hepatoprotective and antitumor activities of polysaccharides from the flower of tea plant (Camellia sinensis). Food and Chemical Toxicology, 50, 2473–2480.

    Article  CAS  Google Scholar 

  45. Aruoma, O. I. (1998). Free radicals oxidative stress and antioxidants in human health and disease. Journal of the American Oil Chemists' Society, 78, 199–211.

    Article  Google Scholar 

  46. Luo, A. X., He, X. J., Zhou, S. D., Fan, Y. J., Luo, A. S., & Chun, Z. (2010). Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohydrate Polymers, 79, 1014–1019.

    Article  CAS  Google Scholar 

  47. Wu, G. H., Hu, T., Li, Z. Y., Huang, Z. L., & Jiang, J. G. (2014). In vitro antioxidant activities of the polysaccharides from Pleurotus tuber-regium (Fr.) Sing. Food Chemistry, 148, 351–356.

    Article  CAS  Google Scholar 

  48. Boual, Z., Pierre, G., Delattre, C., Benaoun, F., Petit, E., Gardarin, C., Michaud, P., & Didi Ould El Hadj, M. (2015). Mediterranean semi-arid plant Astragalus armatus as source of bioactive galactomannan. Bioactive Carbohydrates and Dietary Fibre, 5, 10–18.

    Article  CAS  Google Scholar 

  49. Wong, S. P., Leong, L. P., & Koh, J. H. W. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chemistry, 99, 775–783.

    Article  CAS  Google Scholar 

  50. Chen, H., Zhang, M., Qu, Z., & Xie, B. (2008). Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis). Food Chemistry, 106, 559–563.

    Article  CAS  Google Scholar 

  51. Han, Q., Yu, Q., Shi, J., Xiong, C., Ling, Z., & He, P. (2011). Structural characterization and antioxidant activities of 2 water-soluble polysaccharide fractions purified from tea (Camellia sinensis) flower. Journal of Food Science, 76, C462–C471.

    Article  CAS  Google Scholar 

  52. Zeng, W. C., Zhang, Z., Gao, H., Jia, L. R., & Chen, W. Y. (2012). Characterization of antioxidant polysaccharides from Auricularia auricular using microwave-assisted extraction. Carbohydrate Polymers, 89, 694–700.

    Article  CAS  Google Scholar 

  53. Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition, 125, 1401–1412.

    CAS  Google Scholar 

  54. Wang, Y. (2009). Prebiotics: present and future in food science and technology. Food Research International, 42, 8–12.

    Article  CAS  Google Scholar 

  55. Wichienchot, S., Jatupornpipat, M., & Rastall, R. A. (2010). Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chemistry, 120, 850–857.

    Article  CAS  Google Scholar 

  56. Doron, S., Snydman, D. R., & Gorbach, S. L. (2005). Lactobacillus GG: bacteriology and clinical applications. Gastroenterology Clinics of North America, 34, 483–498.

    Article  Google Scholar 

  57. Vernazza, C. L., Gibson, G. R., & Rastall, R. A. (2006). Carbohydrate preference, acid tolerance and bile tolerance in five strains of Bifidobacterium. Journal of Applied Microbiology, 100, 846–853.

    Article  CAS  Google Scholar 

  58. Ramnani, P., Chitarrari, R., Tuohy, K., Grant, J., Hotchkiss, S., Philp, K., Campbell, R., Gill, C., & Rowland, I. (2012). In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe, 18, 1–6.

    Article  CAS  Google Scholar 

  59. López-Molina, D., Navarro-Martĺnez, M. D., Melgarejo, F. R., Hiner, A. N. P., Chazarra, S., & Rodrĺguez-López, J. N. (2005). Molecular properties and prebiotic effect of inulin obtained from artichoke (CynarascolymusL.). Phytochemistry, 66, 1476–1484.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the “Partenariat Hubert Curien TASSILI (EGIDE).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Michaud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadour, M., Laroche, C., Pierre, G. et al. Structural Characterization and Biological Activities of Polysaccharides from Olive Mill Wastewater. Appl Biochem Biotechnol 177, 431–445 (2015). https://doi.org/10.1007/s12010-015-1753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1753-5

Keywords

Navigation