Skip to main content
Log in

Markerless Deletion System for Escherichia coli Using Short Homologous Sequences and Positive–Negative Selectable Cassette

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Red homologous recombination has been extensively used in recombineering. Because foreign sequences, such as antibiotic resistance genes, FRT-sites, or loxP-sites, are often unwanted in mutant Escherichia coli, we established a markerless deletion system containing short homologous sequences, a positive-selectable marker (kan), and a negative-selectable marker (sacB) for E. coli. For markerless deletion of a specific region of the E. coli genome, a two-step recombination procedure using two different PCR fragments, which were amplified from pUC57-kan-sacB and pUC57-298, was performed. The generation of a pheA-tyrA deficient mutant demonstrated that this markerless deletion system was a simple and efficient method to generate markerless chromosomal deletions in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D., & Rehrauer, W. M. (1994). Biochemistry of homologous recombination in Escherichia coli. Microbiological Reviews, 58, 401–465.

    CAS  Google Scholar 

  2. Muyrers, J. P., Zhang, Y., Benes, V., Testa, G., Rientjes, J. M., & Stewart, A. F. (2004). ET recombination: DNA engineering using homologous recombination in E. coli. Methods in Molecular Biology, 256, 107–121.

    CAS  Google Scholar 

  3. Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97, 6640–6645.

    Article  CAS  Google Scholar 

  4. Murphy, K. C., & Campellone, K. G. (2003). Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Molecular Biology, 4, 11.

    Article  Google Scholar 

  5. Sektas, M., & Specht, M. (2005). Limited use of the Cre/loxP recombination system in efficient production of loxP-containing minicircles in vivo. Plasmid, 53, 148–163.

    Article  CAS  Google Scholar 

  6. Yu, B. J., Kang, K. H., Lee, J. H., Sung, B. H., Kim, M. S., & Kim, S. C. (2008). Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Research, 36, e84.

    Article  Google Scholar 

  7. Song, J., Dong, H., Ma, C., Zhao, B., & Shang, G. (2010). Construction and functional characterization of an integrative form lambda Red recombineering Escherichia coli strain. FEMS Microbiology Letters, 309, 178–183.

    CAS  Google Scholar 

  8. Tischer, B. K., Smith, G. A., & Osterrieder, N. (2010). En passant mutagenesis: a two step markerless red recombination system. Methods in Molecular Biology, 634, 421–430.

    Article  CAS  Google Scholar 

  9. Zhou, Q. M., Fan, D. J., Xie, J. B., Liu, C. P., & Zhou, J. M. (2010). A method for generating precise gene deletions and insertions in Escherichia coli. World Journal of Microbiology and Biotechnology, 26, 1323–1329.

    Article  CAS  Google Scholar 

  10. Tuntufye, H. N., & Goddeeris, B. M. (2011). Use of lambda Red-mediated recombineering and Cre/lox for generation of markerless chromosomal deletions in avian pathogenic Escherichia coli. FEMS Microbiology Letters, 325, 140–147.

    Article  CAS  Google Scholar 

  11. Sun, X., Yang, D., Wang, Y., Geng, H., He, X., & Liu, H. (2013). Development of a markerless gene deletion system for Streptococcus zooepidemicus: functional characterization of hyaluronan synthase gene. Applied Microbiology and Biotechnology, 97, 8629–8636.

    Article  CAS  Google Scholar 

  12. Song, P., Liu, S., Guo, X., Bai, X., He, X., & Zhang, B. (2014). Scarless gene deletion in methylotrophic Hansenula polymorpha by using mazF as counter-selectable marker. Analytical Biochemistry, 468C, 66–74.

    Google Scholar 

  13. Wu, S. S., & Kaiser, D. (1996). Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. Journal of Bacteriology, 178, 5817–5821.

    CAS  Google Scholar 

  14. Pósfai, G., Kolisnychenko, V., Bereczki, Z., & Blattner, F. R. (1999). Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Research, 27, 4409–4415.

    Article  Google Scholar 

  15. Li, X. T., Thomason, L. C., Sawitzke, J. A., Costantino, N., & Court, D. L. (2013). Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. Nucleic Acids Research, 41, e204.

    Article  CAS  Google Scholar 

  16. Gerlach, R. G., Jäckel, D., Hölzer, S. U., & Hensel, M. (2009). Rapid oligonucleotide-based recombineering of the chromosome of Salmonella enterica. Applied and Environmental Microbiology, 75, 1575–1580.

    Article  CAS  Google Scholar 

  17. Kato, F., & Sugai, M. (2011). A simple method of markerless gene deletion in Staphylococcus aureus. Journal of Microbiological Methods, 87, 76–81.

    Article  CAS  Google Scholar 

  18. Kaczmarczyk, A., Vorholt, J. A., & Francez-Charlot, A. (2012). Markerless gene deletion system for sphingomonads. Applied and Environmental Microbiology, 78, 3774–3777.

    Article  CAS  Google Scholar 

  19. Tan, Y., Xu, D., Li, Y., & Wang, X. (2012). Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid, 67, 44–52.

    Article  CAS  Google Scholar 

  20. Blomfield, I. C., Vaughn, V., Rest, R. F., & Eisenstein, B. I. (1991). Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Molecular Microbiology, 5, 1447–1457.

    Article  CAS  Google Scholar 

  21. Gay, P., Le Coq, D., Steinmetz, M., Berkelman, T., & Kado, C. I. (1985). Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. Journal of Bacteriology, 164, 918–921.

    CAS  Google Scholar 

  22. Mizoguchi, H., Tanaka-Masuda, K., & Mori, H. (2007). A simple method for multiple modification of the Escherichia coli K-12 chromosome. Bioscience, Biotechnology, and Biochemistry, 71, 2905–2911.

    Article  CAS  Google Scholar 

  23. Costantino, N., & Court, D. L. (2003). Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proceedings of the National Academy of Sciences of the United States of America, 100, 15748–15753.

    Article  CAS  Google Scholar 

  24. Lin, S., Meng, X., Jiang, J., Pang, D., Jones, G., Ouyang, H., & Ren, L. (2012). Site-directed mutagenesis and over expression of aroG gene of Escherichia coli K-12. International Journal of Biological Macromolecules, 51, 915–919.

    Article  CAS  Google Scholar 

  25. Lütke-Eversloh, T., & Stephanopoulos, G. (2007). L-tyrosine production by deregulated strains of Escherichia coli. Applied Microbiology and Biotechnology, 75, 103–110.

    Article  Google Scholar 

  26. Zhao, Z. J., Zou, C., Zhu, Y. X., Dai, J., Chen, S., Wu, D., Wu, J., & Chen, J. (2011). Development of L-tryptophan production strains by defined genetic modification in Escherichia coli. Journal of Industrial Microbiology & Biotechnology, 38, 1921–1929.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds of Jilin University, the Jilin Province Science and Technology Development Projects (No. 20140101123JC and No. 20150204077NY), Science and Technology Research Program during the 12th Five-year Plan Period of Jilin Educational Committee, and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1248).

T-sacB plasmid was kindly provided by Dr. Guangmo Yan from Jilin University.

Conflict of Interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linzhu Ren.

Additional information

Fuwang Chen, Jie Jiang and Hongsheng OuYang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Jiang, J., OuYang, H. et al. Markerless Deletion System for Escherichia coli Using Short Homologous Sequences and Positive–Negative Selectable Cassette. Appl Biochem Biotechnol 176, 1472–1481 (2015). https://doi.org/10.1007/s12010-015-1658-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1658-3

Keywords

Navigation