Skip to main content

Advertisement

Log in

Proteomic Analysis of Mature Lagenaria siceraria Seed

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lagenaria siceraria (bottle gourd) class belongs to Magnoliopsida family curcurbitaceae that is a traditionally used medicinal plant. Fruit of this plant are widely used as a therapeutic vegetable in various diseases, all over the Asia and Africa. Various parts of this plant like fruit, seed, leaf and root are used as alternative medicine. In the present study, primarily, we have focused on proteomic analysis of L. siceraria seed using phenol extraction method for protein isolation. Twenty-four colloidal coomassie blue stained protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) after resolving on two-dimensional gel electrophoresis. Out of 24 identified protein spots, four were grouped as unidentified proteins which clearly suggest that less work has been done in the direction of plant seed proteomics. These proteins have been found to implicate in various functions such as biosynthesis of plant cell wall polysaccharides and glycoproteins, serine/threonine kinase activity, plant disease resistance and transferase activity against insects by means of insecticidal and larval growth inhibitory, anti-HIV, antihelmintic and antimicrobial properties. By Blast2GO annotation analysis, amongst the identified proteins of L. siceraria, molecular function for majority of proteins has indispensable role in catalytic activity, few in binding activity and antioxidant activity; it is mostly distributed in cell, organelle, membrane and macromolecular complex. Most of them involved in biological process such as metabolic process, cellular process, response to stimulus, single organism process, signalling, biological recognition, cellular component organization or biogenesis and localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Solangi, M. A., & Najam, R. (2013). Anxiolytic and memory enhancing activity of Lagenaria Siceraria in rodents. International Journal of Biomedical and Advance Research, 4, 40–46.

  2. Erickson, D. L., Smith, B. D., Clarke, A. C., Sandweiss, D. H., & Tuross, N. (2005). An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proceedings of the National Academy of Sciences, 102, 18315–18320.

    Article  CAS  Google Scholar 

  3. Rahaman, A. S. H. (2003). Bottle gourd Lagenaria siceraria‐ a vegetable for good health. Natural Product Radiance, 2, 249–256.

    Google Scholar 

  4. Shah, B. N., Seth, A. K., & Desai, R. V. (2010). Phytopharmacological Profile of Lagenaria siceraria: A Review. Asian Journal of Plant Sciences, 9, 152–157.

    Article  CAS  Google Scholar 

  5. Sani, N. A., Hassan, L. G., Dangoggo, S. M., Ladan, M. J., Ali-baba, I., & Umar, K. J. (2008). Effect of Fermentation on the Nutritional and Antinutritional Composition of Lagenaria Siceraria Seeds. Global Journal of Pure Applied Sciences, 14, 301–306.

    Google Scholar 

  6. Ogunbusola, E. M., Fagbemi, T. N., & Osundahunsi, O. F. (2010). Amino acid composition of Lagenaria siceraria seed flour and protein fractions. Journal Food Science Technology, 47, 656–661.

    Article  CAS  Google Scholar 

  7. Gorasiya, H. J., Paranjape, A., & Murti, K. (2011). Pharmacognostic and Pharmacological profile of Lagenaria Siceraria (Molina) Standley: A Review. Pharmacology Online, 3, 317–324.

    Google Scholar 

  8. Prajapati, R. P., Kalariya, M., Parmar, S. K., & Sheth, N. R. (2010). Phytochemical and pharmacological review of Lagenaria siceraria. Journal of Ayurveda and Integrative Medicine, 1, 266–272.

    Article  Google Scholar 

  9. Gautam, S. S., Navneet, & Kumar, S. (2013). Assessment of Antibacterial and Phytochemical analysis of Lagenaria vulgaris Ser. against Respiratory Tract Pathogens. Indian Journal of Biotechnology and Pharmaceutical Research, 1, 23–26.

    Google Scholar 

  10. Wang, H. X., & Ng, T. B. (2000). Lagenin, a novel ribosome-inactivating protein with ribonucleolytic activity from bottle gourd (Lagenaria siceraria) seeds. Life Sciences, 67, 2631–2638.

    Article  CAS  Google Scholar 

  11. Koffi, D. M., Faulet, B. M., Gonnety, J. T., Bédikou, M. E., Kouamé, L. P., Zoro, B. I. A., & Niamké, S. L. (2012). Novel Plant Acid Phosphatases from the Orphan Crop Lagenaria siceraria (Molina) Standl. for Phosphate Ester Synthesis. The Philippine Agricultural Scientist, 95, 14–21.

    Google Scholar 

  12. Panda, S., & Kar, A. (2011). Periplogenin, Isolated from Lagenaria siceraria, Ameliorates L-T4-induced Hyperthyroidism and Associated Cardiovascular Problems. Hormone and Metabolic Research, 43, 188–193.

    Article  CAS  Google Scholar 

  13. Shee, C., Agarwal, S., Gahloth, D., Meena, K., & Sharma, A. K. (2009). Identification of a Peptide-like Compound with Antimicrobial and Trypsin Inhibitory Activity from Seeds of Bottle Gourd (Lagenaria siceraria). Journal of Plant Biochemistry and Biotechnology, 18, 101–104.

    Article  CAS  Google Scholar 

  14. Parle, M., & Kaur, S. (2011). Is bottle gourd a natural guard?? International Research Journal of Pharmacy, 2, 13–17.

    CAS  Google Scholar 

  15. Deshpande, J. R., Chaudhari, A. A., Mishra, M. R., Meghre, V. S., Wadodkar, S. G., & Dorle, A. K. (2008). Beneficial effect of Lagenaria siceraria (Mol.) Standley fruit epicarp in animal models. Indian Journal of Experimental Biology, 46, 234–242.

    CAS  Google Scholar 

  16. Gill, N. S., Singh, S., Arora, R., & Bali, M. (2012). Evaluation of Ethanolic Seed Extract of Lagenaria siceraria for Their Therapeutic Potential. Journal of Medical Sciences, 12, 78–84.

    Article  Google Scholar 

  17. Chimonyo, V. G. P., & Modi, A. T. (2013). Seed Performance of Selected Bottle Gourd (Lagenaria siceraria (Molina) Standl.). American Journal of. Experimental Agriculture, 3, 740–766.

    Article  Google Scholar 

  18. Bhardwaj, J., & Yadav, S. K. (2013). A common protein extraction protocol for proteomic analysis: Horse gram a case study. American Journal of Agricultural and Biological Sciences, 8, 293–301.

    Article  CAS  Google Scholar 

  19. Isaacson, T., Damasceno, C. M. B., & Saravanan, R. S. (2006). Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nature Protocols, 1, 769–774.

    Article  CAS  Google Scholar 

  20. Kumari, B., Kumar, S., Sharma, V. K., Sharma, V., & Yadav, S. (2014). Proteomic identification of Syzygium cumini seed extracts by MALDI-TOF/MS. Applied Biochemistry and Biotechnology, 172, 2091–2105.

    Article  Google Scholar 

  21. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 27, 680–685.

    Article  Google Scholar 

  22. Yang, P. F., Li, X. J., Wang, X. Q., Chen, H., Chen, F., & Shen, S. H. (2007). Proteomics analysis of rice (Oryza sativa) seeds during germination. Proteomics, 7, 3358–3368.

    Article  CAS  Google Scholar 

  23. Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674–3676.

    Article  CAS  Google Scholar 

  24. Belkhadir, Y., Subramaniam, R., & Dangl, J. L. (2004). Plant disease resistance protein signaling: NBS–LRR proteins and their partners. Current Opinion in Plant Biology, 7, 391–399.

    Article  CAS  Google Scholar 

  25. Vescovi, M., Zaffagnini, M., Festa, M., Trost, P., Schiavo, F. L., & Costa, A. (2013). Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots. Plant Physiology, 162, 333–346.

    Article  CAS  Google Scholar 

  26. Chen, M., & Thelen, J. J. (2010). The essential role of plastidial triose phosphate isomerase in the integration of seed reserve mobilization and seedling establishment. Plant Signal & Behavior, 5, 583–585.

    Article  CAS  Google Scholar 

  27. Keegstra, K., & Raikhel, N. (2001). Plant glycosyltransferases. Current Opinion in Plant Biology, 4, 219–224.

    Article  CAS  Google Scholar 

  28. Coutinho, P. M., Stam, M., Blanc, E., & Henrissat, B. (2003). Why are there so many carbohydrate-active enzyme-related genes in plants? Trends in Plant Science, 8, 563–565.

    Article  CAS  Google Scholar 

  29. Hansen, S. F., Harholt, J., Oikawa, A., & Scheller, H. V. (2012). Plant Glycosyltransferases beyond CAZy: A Perspective on DUF Families. Frontier Plant Science, 3, 59.

    CAS  Google Scholar 

  30. Scheible, W., & Pauly, M. (2004). Glycosyltransferases and cell wall biosynthesis: novel players and insights. Current Opinion in Plant Biology. Current Opinion in Plant Biology, 7, 285–295.

    Article  CAS  Google Scholar 

  31. Azevedo, C., Betsuyaku, S., Peart, J., Takahashi, A., Noe, L., Sadanandom, A., Casais, C., Parker, J., & Shirasu, K. (2006). Role of SGT1 in Resistance protein accumulation in plant immunity. The EMBO Journal, 25, 2007–2016.

    Article  CAS  Google Scholar 

  32. Chinchilla, D., Frugier, F., Raices, M., Merchan, F., Giammaria, V., Gargantini, P., Gonzalez-Rizzo, S., Crespi, M., & Ulloa, R. (2008). A mutant ankyrin protein kinase from Medicago sativa affects Arabidopsis adventitious roots. Functional Plant Biology, 35, 92–101.

    Article  CAS  Google Scholar 

  33. Yoo, J., Shin, D. H., Cho, M. H., Kim, T. L., Bhoo, S. H., & Hahn, T. R. (2011). An ankyrin repeat protein is involved in anthocyanin biosynthesis in Arabidopsis. Physiologia Plantarum, 142, 314–325.

    Article  CAS  Google Scholar 

  34. Martin, G. B., Bogdanove, A. J., & Sessa, G. (2003). Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology, 54, 23–61.

    Article  CAS  Google Scholar 

  35. Künzler, M., Gerstberger, T., Stutz, F., Bischoff, F. R., & Hurt, E. (2000). Yeast Ran-binding protein 1 (Yrb1) shuttles between the nucleus and cytoplasm and is exported from the nucleus via a CRM1 (XPO1)-dependent pathway. Molecular and Cell Biology, 20, 4295–4308.

    Article  Google Scholar 

  36. Hodges, M. E., Wickstead, B., Gull, K., & Langdale, J. A. (2012). The evolution of land plant cilia. New Phytologist, 195, 526–540.

    Article  Google Scholar 

  37. Fries, M., Ihrig, J., Brocklehurst, K., Shevchik, V. E., & Pickersgill, R. W. (2007). Molecular basis of the activity of the phytopathogen pectin methylesterase. The EMBO Journal, 26, 3879–3887.

    Article  CAS  Google Scholar 

  38. Micheli, F. (2001). Pectin methylesterases: cell wall enzymes with important roles in plant physiology. TRENDS in Plant Science, 6, 414–419.

    Article  CAS  Google Scholar 

  39. Mylne, J. S., Wang, C. K., Van de Weerden, N. L., & Craik, D. J. (2010). Cyclotides are a component of the innate defense of Oldenlandia affinis. Biopolymers, 94, 635–646.

    Article  CAS  Google Scholar 

  40. Poth, A. G., Colgrave, M. L., Philip, R., Kerenga, B., Daly, N. L., Anderson, M. A., & Craik, D. J. (2011). Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS Chemical Biology, 6, 345–355.

    Article  CAS  Google Scholar 

  41. Craik, D. J., Henriques, S. T., Mylne, J. S., & Wang, C. K. (2012). Cyclotide isolation and characterization. Methods in Enzymology, 516, 37–62.

    Article  CAS  Google Scholar 

  42. Smith, A. B., Daly, N. L., & Craik, D. J. (2011). Cyclotides: a patent review. Expert Opinion on Therapeutic Patents, 21, 1657–1672.

    Article  CAS  Google Scholar 

  43. Nguyen, G. K., Zhang, S., Nguyen, N. T., Nguyen, P. Q., Chiu, M. S., Hardjojo, A., & Tam, J. P. (2011). Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family. Journal of Biological Chemistry, 286, 24275–24287.

    Article  CAS  Google Scholar 

  44. Bhardwaj, D., Lakhanpaul, S., & Tuteja, N. (2012). Wide range of interacting partners of pea Gβ subunit of G-proteins suggest its multiple functions in cell signaling. Plant Physiology and Biochemistry, 58, 1–5.

    Article  CAS  Google Scholar 

  45. Supuran, C. T. (2008). Carbonic anhydrases-an overview. Current Pharmaceutical Design, 14, 603–614.

    Article  CAS  Google Scholar 

  46. Mori, S., Kobayashi, H., Hoshi, Y., Kondo, M., & Nakano, M. (2004). Heterologous expression of the flavonoid 3’,5’-hydroxylase gene of Vinca major alters flower color in transgenic Petunia hybrida. Plant Cell Reports, 22, 415–421.

    Article  CAS  Google Scholar 

  47. Vetten, N. D., Horst, J., Schaik, H. V., Boer, A. D., Mol, J., & Koes, R. (1999). A cytochrome b5 is required for full activity of flavonoid 3′,5′-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Plant Biology, 96, 778–783.

    Google Scholar 

  48. Olsen, K. M., Hehn, A., Jugdé, H., Slimestad, R., Larbat, R., Bourgaud, F., & Lillo, C. (2010). Identification and characterisation of CYP75A31, a new flavonoid 3'5'-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biology, 10, 21.

    Article  Google Scholar 

  49. Zoschke, R., Nakamura, M., Liere, K., Sugiura, M., Borner, T., & Schmitz-Linneweber, C. (2010). An organellar maturase associates with multiple group II introns. Proceedings of the National Academy of Sciences, 107, 3245–3250.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Women Scientists Scheme (WOS-A), Department of Science and Technology (DST), India. Neha Kumari and Md. Tajmul thank the DST, India and the Indian Council of Medical Research (ICMR), India for their fellowship, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savita Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, N., Tajmul, M. & Yadav, S. Proteomic Analysis of Mature Lagenaria siceraria Seed. Appl Biochem Biotechnol 175, 3643–3656 (2015). https://doi.org/10.1007/s12010-015-1532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1532-3

Keywords

Navigation