Skip to main content
Log in

Ni3Mo3C as Anode Catalyst for High-Performance Microbial Fuel Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ni3Mo3C was prepared by a modified organic colloid method and explored as anode catalyst for high-performance microbial fuel cell (MFC) based on Klebsiella pneumoniae (K. pneumoniae). The prepared sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET). The activity of the sample as anode catalyst for MFC based on K. pneumoniae was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and polarization curve measurement. The results show that the adding of nickel in Mo2C increases the BET surface area of Mo2C and improves the electrocatalytic activity of Mo2C towards the oxidation of microbial fermentation products. The power density of MFC with 3 mg cm−2 Ni3Mo3C anode is far higher than that of the MFC with carbon felt as anode without any catalyst, which is 19 % higher than that of Mo2C anode and produced 62 % as much as that of Pt anode, indicating that Ni3Mo3C is comparative to noble metal platinum as anode electrocatalyst for MFCs by increasing the loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Logan, B. E. (2009). Nature Reviews Microbiology, 7, 375–381.

    Article  CAS  Google Scholar 

  2. Lovley, D. R. (2006). Nature Reviews Microbiology, 4, 497–508.

    Article  CAS  Google Scholar 

  3. Rabaey, K., & Verstraete, W. (2005). Trends Biotechnology, 2, 291–298.

    Article  Google Scholar 

  4. Call, D., & Logan, B. E. (2008). Environmental Science and Technology, 42, 3401–3406.

    Article  CAS  Google Scholar 

  5. Rabaey, K., Sompel, K. V., Maignien, L., Boon, N., Aelterman, P., Clauwaert, P., Schamphelaire, L. D., Pham, H. T., Vermeulen, J., Verhaege, M., Lens, P., & Verstraete, W. (2006). Environmental Science and Technology, 40, 5218–5224.

    Article  CAS  Google Scholar 

  6. Di Lorenzo, M., Curtis, T. P., Head, I. M., & Scott, K. (2009). Water Research, 43, 3145–3154.

    Article  Google Scholar 

  7. Chang, I. S., Moon, H., Jang, J. K., & Kim, B. H. (2005). Biosensors Bioelectronics, 20, 1856–1859.

    Article  CAS  Google Scholar 

  8. Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S., & Kim, H. J. (2003). Biotechnology Letters, 25, 541–545.

    Article  CAS  Google Scholar 

  9. Wang, Y. Q., Li, B., Cui, D., Xiang, X. D., & Li, W. S. (2014). Biosensors Bioelectronics, 51, 349–355.

    Article  CAS  Google Scholar 

  10. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Environmental Science and Technology, 40, 5181–5192.

    Article  CAS  Google Scholar 

  11. Rosenbaum, M., Zhao, F., Schröder, U., & Scholz, F. (2006). Angewandte Chemie International Edition, 45, 6658–6661.

    Article  CAS  Google Scholar 

  12. Rosenbaum, M., Zhao, F., Quaas, M., Wulff, H., Schröder, U., & Scholz, F. (2007). Applied Catalysis B Environment, 74, 261–269.

    Article  CAS  Google Scholar 

  13. Hwu, H. H., & Chen, J. G. (2005). Chemical Reviews, 105, 185–212.

    Article  CAS  Google Scholar 

  14. Zeng, L. Z., Zhang, L. X., Li, W. S., Zhao, S. F., Lei, J. F., & Zhou, Z. H. (2010). Biosensors Bioelectronics, 25, 2696–2700.

    Article  CAS  Google Scholar 

  15. Zeng, L. Z., Zhao, S. F., Wang, Y. Q., Hong, L., & Li, W. S. (2012). International Journal of Hydrogen Energy, 37, 4590–4596.

    Article  CAS  Google Scholar 

  16. Zhang, L. X., Zhou, S. G., Zhuang, L., Li, W. S., Zhang, J. T., Lu, N., & Deng, L. F. (2008). Electrochemistry Communications, 10, 1641–1643.

    Article  CAS  Google Scholar 

  17. Zhang, L. X., Liu, C. S., Zhuang, L., Li, W. S., Zhou, S. G., & Zhang, J. T. (2009). Biosensors Bioelectronics, 24, 2825–2829.

    Article  CAS  Google Scholar 

  18. Barnett, C. J., Burstein, G. T., Kucernak, A. R. J., & Williams, K. R. (1997). Electrochimical Acta, 42, 2381–2388.

    Article  CAS  Google Scholar 

  19. Izhar, S., Otsuka, S., & Nagai, M. (2008). Journal of New Materials for Electrochemical Systems, 11, 15–20.

    CAS  Google Scholar 

  20. Preiss, H., Mayer, B., & Olschewski, C. (1998). Journal of Materials Science, 33, 713–722.

    Article  CAS  Google Scholar 

  21. Qiao, Y., Bao, S. J., Li, C. M., Cui, X. Q., Lu, Z. S., & Guo, J. (2008). ACS Nano, 2, 113–119.

    Article  CAS  Google Scholar 

  22. Song, H. K., Sung, J. H., Jung, Y. H., Lee, K. H., Dao, L. H., Kim, M. H., & Kim, H. N. (2004). Journal of the Electrochemical Society, 151, 102–109.

    Article  Google Scholar 

  23. Elliott, J. M., & Owen, J. R. (2000). Physical Chemistry Chemical Physics, 2, 5653–5659.

    Article  CAS  Google Scholar 

  24. Katuri, K. P., Scott, K., Head, I. M., Picioreanu, C., & Curtis, T. P. (2011). Bioresource Technology, 102, 2758–2766.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National 863 project of China (No. 2009AA05Z112) and the National Natural Science Foundation of China (NSFC, No. 20573039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Zhen Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, LZ., Zhao, SF. & Li, WS. Ni3Mo3C as Anode Catalyst for High-Performance Microbial Fuel Cells. Appl Biochem Biotechnol 175, 2637–2646 (2015). https://doi.org/10.1007/s12010-014-1458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1458-1

Keywords

Navigation