Skip to main content
Log in

Graphene-Multiwall Carbon Nanotube-Gold Nanocluster Composites Modified Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, graphene-multiwall carbon nanotube-gold nanocluster (GP-MWCNT-AuNC) composites were synthesized and used as modifier to fabricate a sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrochemical behavior of the sensor was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The combination of GP, MWCNTs, and AuNCs endowed the electrode with a large surface area, good catalytic activity, and high selectivity and sensitivity. The linear response range for simultaneous detection of AA, DA, and UA at the sensor were 120–1,701, 2–213, and 0.7–88.3 μM, correspondingly, and the detection limits were 40, 0.67, and 0.23 μM (S/N = 3), respectively. The proposed method offers a promise for simple, rapid, selective, and cost-effective analysis of small biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arrigoni, O., & De Tullio, M. C. (2002). Biochimica et Biophysica Acta, 1569, 1–9.

    CAS  Google Scholar 

  2. Atta, N. F., El-Kady, M. F., & Ahmed, G. (2010). Analytical Biochemistry, 400, 78–88.

    CAS  Google Scholar 

  3. Damier, P., Hirsch, E. C., Agid, Y., & Graybiel, A. M. (1999). Brain, 122, 1437–1448.

    Google Scholar 

  4. Chakraborty, C., Pal, S., Doss, C. G. P., Wen, Z. H., & Lin, C. S. (2012). Applied Biochemistry and Biotechnology, 167, 845–860.

    CAS  Google Scholar 

  5. Wightman, R. M., May, L. J., & Michael, A. C. (1988). Analytical Chemistry, 60, 769A–779A.

    CAS  Google Scholar 

  6. El Bouhouti, H., Naranjo-Rodríguez, I., de Hidalgo-Hidalgo Cisneros, J. L., ElKaoutit, M., Temsamani, K. R., Bouchta, D., et al. (2009). Talanta, 79, 22–26.

    Google Scholar 

  7. Kalimuthu, P., & John, S. A. (2009). Bioelectrochemistry, 77, 13–18.

    CAS  Google Scholar 

  8. Liu, Y., Huang, J. S., Hou, H. Q., & You, T. Y. (2008). Electrochemistry Communications, 19, 1431–1434.

    Google Scholar 

  9. Huang, J., Liu, Y., Hou, H., & You, T. (2008). Biosensors and Bioelectronics, 24, 632–637.

    CAS  Google Scholar 

  10. Thiagarajan, S., & Chen, S. M. (2007). Talanta, 74, 212–222.

    CAS  Google Scholar 

  11. Zhang, L., & Jiang, X. (2005). Journal of Electroanalytical Chemistry, 583, 292–299.

    CAS  Google Scholar 

  12. Zhang, R., Jin, G. D., Chen, D., & Hu, X. Y. (2009). Sensors and Actuators B, 138, 174–181.

    CAS  Google Scholar 

  13. Balamurugan, A., & Chen, S. M. (2007). Analytica Chimica Acta, 596, 92–98.

    CAS  Google Scholar 

  14. Li, Y. X., & Lin, X. Q. (2006). Sensors and Actuators B, 115, 134–139.

    CAS  Google Scholar 

  15. Nien, P. C., Chen, P. Y., & Ho, K. C. (2009). Sensors and Actuators B, 40, 58–64.

    Google Scholar 

  16. Su, W. Y., & Cheng, S. H. (2008). Electrochemistry Communications, 10, 899–902.

    CAS  Google Scholar 

  17. Liu, X. F., Zhang, L., Wei, S. P., Chen, S. H., & Lu, Q. Y. (2014). Biosensors and Bioelectronics, 57, 232–238.

    CAS  Google Scholar 

  18. Raj, C. R., Tokuda, K., & Ohsaka, T. (2001). Bioelectrochemistry, 53, 183–191.

    CAS  Google Scholar 

  19. Zhang, L., Jai, J. B., Zou, X. Q., & Dong, S. J. (2004). Electroanalysis, 16, 1413–1418.

    CAS  Google Scholar 

  20. Cui, R. J., Wang, X. Y., Zhang, G. H., & Wang, C. (2012). Sensors and Actuators B, 161, 1139–1143.

    CAS  Google Scholar 

  21. Zhu, S. Y., Li, H. J., Niu, W. X., & Xu, G. B. (2009). Biosensors and Bioelectronics, 25, 940–943.

    CAS  Google Scholar 

  22. Abbaspour, A., & Noori, A. (2011). Biosensors and Bioelectronics, 26, 4674–4680.

    CAS  Google Scholar 

  23. Zhao, Y., Gao, Y., Zhan, D., Liu, H., Zhao, Q., Kou, Y., et al. (2005). Talanta, 66, 51–57.

    CAS  Google Scholar 

  24. Shankaran, D. R., Uehara, N., & Kato, T. (2003). Analytica Chimica Acta, 478, 321–327.

    Google Scholar 

  25. Zare, H. R., Nasirizadeh, N., & Ardakani, M. M. (2005). Electrochemistry Communications, 577, 25–33.

    CAS  Google Scholar 

  26. Kalimuthu, P., & Abraham John, S. (2009). Biosensors and Bioelectronics, 24, 3575–3580.

    CAS  Google Scholar 

  27. Tao, Y., Li, Y. H., Ren, J. S., & Qu, X. G. (2013). Biosensors and Bioelectronics, 42, 41–46.

    CAS  Google Scholar 

  28. Lin, H., Li, L. J., Lei, C. Y., Xu, X. H., Nie, Z., Guo, M. L., et al. (2013). Biosensors and Bioelectronics, 41, 256–261.

    CAS  Google Scholar 

  29. Wang, X. X., Wu, P., Hou, X. D., & Lv, Y. (2013). Analyst, 138, 229–233.

    CAS  Google Scholar 

  30. Zhang, Y., Yuan, R., Chai, Y. Q., Li, W. J., Zhong, X., & Zhong, H. A. (2011). Biosensors and Bioelectronics, 26, 3977–3980.

    CAS  Google Scholar 

  31. Liu, T., Su, H. C., Qu, X. J., Ju, P., Cui, L., & Ai, S. Y. (2011). Sensors and Actuators B, 160, 1255–1261.

    CAS  Google Scholar 

  32. Zhou, L. Y., Jiang, Y. J., Gao, J., Zhao, X. Q., & Ma, L. (2012). Applied Biochemistry and Biotechnology, 168, 1635–1642.

    CAS  Google Scholar 

  33. Sun, A. L., Sheng, Q. L., & Zheng, J. B. (2012). Applied Biochemistry and Biotechnology, 166, 764–773.

    CAS  Google Scholar 

  34. Jang, H. D., Kim, S. K., Chang, H., Roh, K. M., Choi, J. W., & Huang, J. (2012). Biosensors and Bioelectronics, 38, 184–188.

    CAS  Google Scholar 

  35. Sun, W., Qi, X., Zhang, Y., Yang, H., Gao, H., Chen, Y., et al. (2012). Electrochimica Acta, 85, 145–151.

    CAS  Google Scholar 

  36. Wang, C., Yuan, R., Chai, Y. Q., Chen, S. H., Zhang, Y., Hu, F. X., et al. (2012). Electrochimica Acta, 62, 109–115.

    CAS  Google Scholar 

  37. Xiao, C. H., Chu, X. C., Yang, Y., Li, X., Zhang, X. H., & Chen, J. H. (2011). Biosensors and Bioelectronics, 26, 2934–2939.

    CAS  Google Scholar 

  38. Zheng, D., Ye, J. S., Zhou, L., Zhang, Y., & Yu, C. Z. (2009). Journal of Electroanalytical Chemistry, 625, 82–87.

    CAS  Google Scholar 

  39. Yao, H., Sun, Y. Y., Lin, X. H., Tang, Y. H., & Huang, L. Y. (2007). Electrochimica Acta, 52, 6165–6171.

    CAS  Google Scholar 

  40. Argüello, J., Leidens, V. L., Magosso, H. A., Ramos, R. R., & Gushikem, Y. (2008). Electrochimica Acta, 54, 560–565.

    Google Scholar 

  41. Han, D. X., Han, T. T., Shan, C. S., Ivaska, A., & Niu, L. (2010). Electroanalysis, 22, 2001–2008.

    CAS  Google Scholar 

  42. Wang, P., Li, Y. X., Huang, X., & Wang, L. (2007). Talanta, 73, 431–437.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (21075100, 21275119), Municipal Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, and the Fundamental Research Funds for the Central Universities (XDJK2012A004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaping Wei or Shihong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wei, S., Chen, S. et al. Graphene-Multiwall Carbon Nanotube-Gold Nanocluster Composites Modified Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Appl Biochem Biotechnol 173, 1717–1726 (2014). https://doi.org/10.1007/s12010-014-0959-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0959-2

Keywords

Navigation