Skip to main content
Log in

Optimization of Xylanase Production by Filamentous Fungi in Solid-State Fermentation and Scale-up to Horizontal Tube Bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 21 March 2015

Abstract

Five microorganisms, namely Aspergillus niger CECT 2700, A. niger CECT 2915, A. niger CECT 2088, Aspergillus terreus CECT 2808, and Rhizopus stolonifer CECT 2344, were grown on corncob to produce cell wall polysaccharide-degrading enzymes, mainly xylanases, by solid-state fermentation (SSF). A. niger CECT 2700 produced the highest amount of xylanases of 504 ± 7 U/g dry corncob (dcc) after 3 days of fermentation. The optimization of the culture broth (5.0 g/L NaNO3, 1.3 g/L (NH4)2SO4, 4.5 g/L KH2PO4, and 3 g/L yeast extract) and operational conditions (5 g of bed loading, using an initial substrate to moistening medium of 1:3.6 (w/v)) allowed increasing the predicted maximal xylanase activity up to 2,452.7 U/g dcc. However, different pretreatments of materials, including destarching, autoclaving, microwave, and alkaline treatments, were detrimental. Finally, the process was successfully established in a laboratory-scale horizontal tube bioreactor, achieving the highest xylanase activity (2,926 U/g dcc) at a flow rate of 0.2 L/min. The result showed an overall 5.8-fold increase in xylanase activity after optimization of culture media, operational conditions, and scale-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raghavarao, K. S., Ramganathan, T. V., & Karanth, N. G. (2003). Biochemical Engineering Journal, 13, 127–135.

    Article  CAS  Google Scholar 

  2. Archana, A., & Satyanarayana, T. (1997). Enzyme and Microbial Technology, 21, 12–17.

    Article  CAS  Google Scholar 

  3. Pal, A., & Khanum, F. (2010). Bioresource Technology, 101, 7563–7569.

    Article  CAS  Google Scholar 

  4. Badhan, A. K., Chadha, B. S., Kaur, J., Saini, H. S., & Bhat, M. K. (2007). Bioresource Technology, 98, 504–510.

    Article  CAS  Google Scholar 

  5. Kulkarni, N., Shendye, A., & Rao, M. (1999). FEMS Microbiology Reviews, 23, 411–456.

    Article  CAS  Google Scholar 

  6. Chapla, D., Divecha, J., Madamwar, D., & Shah, A. (2010). Biochemical Engineering Journal, 49, 361–369.

    Article  CAS  Google Scholar 

  7. Bakri, Y., Al-Jazairi, M., & Al-Kayat, G. (2008). Polish Journal of Microbiology, 57(3), 249–251.

    CAS  Google Scholar 

  8. Lakshmi, G. S., Rao, C. S., Rao, R. S., Hobbs, P. J., & Prakasham, R. S. (2009). Biochemical Engineering Journal, 48, 51–57.

    Article  CAS  Google Scholar 

  9. Qureshi, N., & Blaschek, H. P. (2000). Transactions Institute of Chemical Engineers, 78((Part C), 139–144.

    Google Scholar 

  10. Food and Agriculture Organization of the United Nations. FAOSTAT. Available in: http://faostat.fao.org. Accessed September 26, 2013.

  11. Senthilkumar, S. R., Ashokkumar, B., Raj, K. C., & Gunasekaran, P. (2005). Bioresource Technology, 96(12), 1380–1386.

    Article  CAS  Google Scholar 

  12. Wong, K. K. Y., Tan, L. U. L., & Saddler, J. N. (1988). Microbiological Reviews, 52, 305–317.

    CAS  Google Scholar 

  13. Prade, R. A. (1996). Biotechnology and Genetic Engineering Reviews, 13, 120–131.

    Article  Google Scholar 

  14. Maciel, G. M., Vandenberghe, L. P. S., Haminiuk, C. W. I., Fendrich, R. C., Bianca, B. E. D., Brandalize, T. Q. S., Pandey, A., & Soccol, C. R. (2008). Food Tech. Biotech, 46(2), 183–189.

    CAS  Google Scholar 

  15. Saulnier, L., Marot, C., Elgorriaga, M., Bonnin, E., & Thibault, J. F. (2001). Carbohydrate Polymers, 45, 269–275.

    Article  CAS  Google Scholar 

  16. Bonnin, E., Saulnier, L., Brunel, M., Marot, C., Lesage-Meessen, L., Asther, M., & Thibault, J. F. (2002). Enzyme and Microbial Technology, 31, 1000–1005.

    Google Scholar 

  17. Pang, F., Xue, S., Yu, S., Zhang, C., Li, B., & Kang, Y. (2013). Industrial Crops Products, 42, 402–408.

    Article  CAS  Google Scholar 

  18. Vázquez, D., Lage, M. A., Parajó, J. C., & Vázquez, G. (1991). Revista Agroquimica Tecnologia, 31, 143–164.

    Google Scholar 

  19. Miller, L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Bailey, M. J., Biely, P., & Poutanen, K. (1992). J of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  21. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  22. Mastihuba, V., Kremnický, L., Mastihubová, M., Willett, J. L., & Côté, G. L. (2002). Analytical Biochemistry, 309, 96–101.

    Article  CAS  Google Scholar 

  23. Delabona, P. D. S., Pirota, R. D. P. B., Codima, C. A., Tremacoldi, C. R., Rodrigues, A., & Farinas, C. S. (2013). Industrial Crops and Products, 42, 236–242.

    Article  CAS  Google Scholar 

  24. Hang, Y. D., & Woodams, E. E. (2001). LWT Food Science and Technology, 34(7), 484–486.

    Article  CAS  Google Scholar 

  25. Haltrich, D., Nidetzky, B., Kulbe, K. D., Steiner, W., & Župančič, S. (1996). Bioresource Technology, 58, 137–161.

    Article  CAS  Google Scholar 

  26. Haapala, R., Linko, S., Parkkinen, E., & Sumominen, P. (1994). Biotechnology Techniques, 8, 401–406.

    Article  CAS  Google Scholar 

  27. Salgado, J. M., Rodríguez, N., Cortés, S., & Domínguez, J. M. (2009). Journal of Agricultural and Food Chemistry, 57, 10414–10428.

    Article  CAS  Google Scholar 

  28. Salgado, J. M., Martínez Carballo, E., Max, B., & Domínguez, J. M. (2010). Bioresource Technology, 101, 2379–2388.

    Article  CAS  Google Scholar 

  29. Benedetti, A. C. E. P., da Costa, E. D., Aragon, C. C., dos Santos, A. F., Goulart, A. J., Attili-Angelis, D., & Monti, R. (2013). Revista de Ciencias Farmaceuticas Basica Aplicada, 34(1), 25–31.

    CAS  Google Scholar 

  30. Rao, R. S., Kumar, C. G., Prakasham, R. S., & Hobbs, P. J. (2008). Biotechnology Journal, 3, 510–523.

    Article  CAS  Google Scholar 

  31. Téllez-Luis, S. J., Moldes, A. B., Alonso, J. L., & Vázquez, M. (2003). Journal of Food Science, 68(4), 1454–1458.

    Article  Google Scholar 

  32. de Lima, C. J. B., Coelho, L. F., da Silva, G. P., Alvarez, G. L. M., & Contiero, J. (2010). Journal of Microbial and Biochemical Technology, 2(3), 64–69.

    Article  Google Scholar 

  33. Lonsane, B. K., Saucedo-Castaneda, G., Raimbault, M., Roussos, S., Viniegra-Gonzalez, G., Ghildyal, N. P., Ramakrishna, M., & Krishnaiah, M. M. (1992). Process Biochemistry, 27, 259–273.

    Article  CAS  Google Scholar 

  34. Shah, A. R., & Madamwar, D. (2005). World Journal of Microbiology Biotechnology, 21, 233–243.

    Article  CAS  Google Scholar 

  35. Poorna, C. A., & Prema, P. (2007). Bioresource Technology, 98, 485–490.

    Article  Google Scholar 

  36. Lu, M., Brooks, J. D., & Maddox, I. S. (1997). Enzyme and Microbial Technology, 21(6), 392–397.

    Article  CAS  Google Scholar 

  37. Torrado, A. M., Cortés, S., Salgado, J. M., Max, B., Rodríguez, N., Bibbins, B. P., Converti, A., & Domínguez, J. M. (2011). Brazilian Journal of Microbiology, 42, 394–409.

    Article  CAS  Google Scholar 

  38. Camassola, M., & Dillon, A. J. P. (2007). Journal of Applied Microbiology, 103(6), 2196–2204.

    Article  CAS  Google Scholar 

  39. Nair, S. G., Sindhu, R., & Shashidhar, A. (2008). African J. Microbiological Research, 2, 82–86.

    Google Scholar 

  40. Seyis, I., & Aksoz, N. (2005). Food Tech. Biotech, 43(1), 37–40.

    CAS  Google Scholar 

  41. Rao, Y. K., Lu, S. C., Liu, B. L., & Tzeng, Y. M. (2006). Biochemical Engineering Journal, 28, 57–66.

    Article  CAS  Google Scholar 

  42. Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Applied Biochemistry and Biotechnology, 162, 1872–1880.

    Article  CAS  Google Scholar 

  43. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  44. Hendriks, A. T. W. M., & Zeeman, G. (2009). Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  45. Wang, Z., Keshwani, D. R., Redding, A. P., & Cheng, J. J. (2010). Bioresource Technology, 101, 3583–3585.

    Article  CAS  Google Scholar 

  46. Van Dyk, J. S., & Pletschke, B. I. (2012). Biotechnology Advances, 30, 1458–1480.

    Article  Google Scholar 

  47. Zhu, S., Wu, Y., Yu, Z., Liao, J., & Zhang, Y. (2005). Process Biochemistry, 40(9), 3082–3086.

    Article  CAS  Google Scholar 

  48. Rahnama, N., Mamat, S., Shah, U. K. M., Ling, F. H., Rahman, N. A. A., & Ariff, A. B. (2013). BioResources, 8(2), 2881–2896.

    Article  Google Scholar 

  49. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  50. Monteil-Rivera, F., Huang, G. H., Paquet, L., Deschamps, S., Beaulieu, C., & Hawari, J. (2012). Bioresource Technology, 104, 775–782.

    Article  CAS  Google Scholar 

  51. Taherzadeh, M. J., & Karimi, K. (2008). International Journal of Molecular Sciences, 9, 1621–1651.

    Article  CAS  Google Scholar 

  52. Shah, A. R., & Madamwar, D. (2005). World J. Microbial Biotechnology, 21, 233–243.

    Article  CAS  Google Scholar 

  53. Mandal, S. K., & Banerjee, P. C. (2005). Process Biochemistry, 40, 1605–1610.

    Article  CAS  Google Scholar 

  54. Mattey, M. (1992). CRC Critical Reviews in Biotechnology, 12, 87–132.

    Google Scholar 

  55. Shen, X., & Xia, L. (2004). Process Biochemistry, 39, 1363–1367.

    Google Scholar 

  56. Yeoh, H. H., Tan, T. K., Chua, S. L., & Lim, G. (1998). MIRCEN J, 4, 425–430.

  57. Shin, H. D., & Chen, R. R. (2006). Enzyme and Microbial Technology, 38, 478–485.

    Article  CAS  Google Scholar 

  58. Fazary, A. E., & Ju, Y. H. (2007). Acta Biochimica et Biophysica Sinica, 39, 811–828.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Spanish Ministry of Science and Innovation for the financial support of this work (project CTQ2011-28967), which has partial financial support from the FEDER funds of the European Union; to the Leonardo da Vinci Programme for founding the stay of Felisbela Oliveira in Vigo University; to MAEC-AECID (Spanish Government) for the financial support for Pérez-Bibbins, B. and to Spanish Ministry of Education, Culture and Sports for Pérez-Rodríguez‘s FPU; and to Solla E. and Méndez J. (CACTI-University of Vigo) for their excellent technical assistance in microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Domínguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Rodríguez, N., Oliveira, F., Pérez-Bibbins, B. et al. Optimization of Xylanase Production by Filamentous Fungi in Solid-State Fermentation and Scale-up to Horizontal Tube Bioreactor. Appl Biochem Biotechnol 173, 803–825 (2014). https://doi.org/10.1007/s12010-014-0895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0895-1

Keywords

Navigation