Skip to main content
Log in

Optimization of solid particle erosion behavior of thermally sprayed nichrome on duplex stainless steel

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Erosion stands as a formidable challenge within the industry, posing significant threats to pipeline integrity. This wear phenomenon occurs when minute solid particles collide with pipeline surfaces at specific angles and velocities. Given the pivotal role pipelines play in sectors like oil and industrial, their vulnerability to erosion wear presents a pressing concern. Solid particles inevitably accompany the fluids coursing through these conduits, subjecting them to erosion under harsh operational conditions. The repercussions extend beyond industrial realms, affecting both natural environments and societal well-being. Detecting and addressing erosion-induced damage promptly remains a daunting task, with potential leaks draining resources and disrupting operations. Unforeseen shutdowns further escalate operational costs and hinder productivity. Clearly, mitigating erosion wear is imperative for ensuring clean, safe, and efficient production processes. Consequently, industrial endeavors prioritize strategies to counteract erosion's deleterious effects. Technological advancements offer promising avenues for tackling this challenge. This investigation aims to devise effective solutions, focusing on the efficacy of a nickel–chromium erosion-resistant coating applied via atmospheric plasma spraying. A comprehensive analysis of erosion mechanisms and influencing parameters guides this endeavor. Through desirability analysis and Taguchi design of experiments, optimal parameters—flow velocity of 150 m/s, impact angle of 90°, discharge rate of 5 g/min, and 10 min duration—are identified. Notably, experimental results closely align with predictions, demonstrating a mere 3.03% variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability statement

The data supporting the findings of this study are available within the manuscript.

References

  1. Seghier, M.E.A.B., Höche, D., Zheludkevich, M.: Prediction of the internal corrosion rate for oil and gas pipeline: implementation of ensemble learning techniques. J. Nat. Gas. Sci. Eng. 99, 104425 (2022)

    Article  Google Scholar 

  2. Liao, Q., Liang, Y., Tu, R., Huang, L., Zheng, J., Wang, G., Zhang, H.: Innovations of carbon-neutral petroleum pipeline: a review. Energy Rep. 8, 13114–13128 (2022)

    Article  Google Scholar 

  3. Peng, S., Zhang, Z., Liu, E., Liu, W., Qiao, W.: A new hybrid algorithm model for prediction of internal corrosion rate of multiphase pipeline. J. Nat. Gas Sci. Eng. 85, 103716 (2021)

    Article  Google Scholar 

  4. Wu, T., Chen, Y., Deng, Z., Shen, L., Xie, Z., Liu, Y., Zhu, S., Liu, C., Li, Y.: Oil pipeline leakage monitoring developments in China. J. Pipeline Sci. Eng. 100129 (2023)

  5. Lu, H., Ma, X., Huang, K., Azimi, M.: Carbon trading volume and price forecasting in China using multiple machine learning models. J. Clean. Prod. 249, 119386 (2020)

    Article  Google Scholar 

  6. Yin, H., Liu, C., Wu, W., Song, K., Dan, Y., Cheng, G.: An integrated framework for criticality evaluation of oil and gas pipelines based on fuzzy logic inference and machine learning. J. Natural Gas Sci. Eng. 96, 104264 (2021)

    Article  Google Scholar 

  7. Wee, S.K., Yap, Y.J.: CFD study of sand erosion in pipeline. J. Petrol. Sci. Eng. 176, 269–278 (2019)

    Article  Google Scholar 

  8. Wang, Q., Ba, X., Huang, Q., Wang, N., Wen, Y., Zhang, Z., Sun, X., Yang, L., Zhang, J.: Modeling erosion process in elbows of petroleum pipelines using large eddy simulation. J. Petrol. Sci. Eng. 211, 110216 (2022)

    Article  Google Scholar 

  9. Singh, R., Kumar, S., Gehlot, A., Pachauri, R.: An imperative role of sun trackers in photovoltaic technology: a review. Renew. Sustain. Energy Rev. 82, 3263–3278 (2018)

    Article  Google Scholar 

  10. Nguyen, Q.B., Lim, C.Y.H., Nguyen, V.B., Wan, Y.M., Nai, B., Zhang, Y.W., Gupta, M.: Slurry erosion characteristics and erosion mechanisms of stainless steel. Tribol. Int. 79, 1–7 (2014)

    Article  Google Scholar 

  11. Krella, A., Marchewicz, A.: Effect of mechanical properties of CrN/CrCN coatings and uncoated 1.402 stainless steel on the evolution of degradation and surface roughness in cavitation erosion. Tribol. Int. 177, 107991 (2023)

    Article  Google Scholar 

  12. Heymann, F.J.: A survey of clues to the relation between erosion rate and impact parameters. In: Second rain erosion conference, 2, pp. 683–760 (1967)

  13. Zhou, H., Liu, Z., Kikuchi, S., Shibanuma, K.: Analysis of fatigue performance of austenitic stainless steels with bimodal harmonic structures based on multiscale model simulations. Mater. Des. 226, 111657 (2023)

    Article  Google Scholar 

  14. Solomon, H.D., Devine Jr, T.M.: Duplex stainless steels: a tale of two phases. In: Duplex Stainless Steels, 693–756 (1982)

  15. Charles, J.: Structure and properties. In: Proceedings of Conference Duplex Stainless Steels' 91, 3–48 (1991)

  16. Francis, R., Byrne, G.: Duplex stainless steels—alloys for the 21st century. Metals 11(5), 836 (2021)

    Article  Google Scholar 

  17. Francis, R.: The corrosion of duplex stainless steels: a practical guide for engineers (2018)

  18. Tavana, S.M., Hojjati, M., Liberati, A.C., Moreau, C.: Erosion resistance enhancement of polymeric composites with air plasma sprayed coatings. Surf. Coat. Technol. 455, 129211 (2023)

    Article  Google Scholar 

  19. Okokpujie, I.P., Tartibu, L.K., Musa-Basheer, H.O., Adeoye, A.O.M.: Effect of coatings on mechanical, corrosion and tribological properties of industrial materials: a comprehensive review. J. Bio-and Tribo-Corros. 10(1), 2 (2024)

    Article  Google Scholar 

  20. Santa, J.F., Espitia, L.A., Blanco, J.A., Romo, S.A., Toro, A.: Slurry and cavitation erosion resistance of thermal spray coatings. Wear 267(1–4), 160–167 (2009)

    Article  Google Scholar 

  21. Di, G.G., Brentari, A., Blasi, C., Serra, E.: Microstructure and mechanical properties of plasma sprayed alumina based coatings. Ceram. Int. 40(8), 12861–12879 (2014)

    Article  Google Scholar 

  22. Fotovvati, B., Namdari, N., Dehghanghadikolaei, A.: On coating techniques for surface protection: a review. J. Manuf. Mater. Process. 3(1), 1–22 (2019)

    Google Scholar 

  23. Kamal, S., Jayaganthan, R., Prakash, S., Kumar, S.: Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based super alloys in Na2SO4–60% V2O5 environment at 900 C. J. Alloy. Compd. 463(1–2), 358–372 (2008)

    Article  Google Scholar 

  24. Bolelli, G., Colella, A., Lusvarghi, L., Puddu, P., Rigon, R., Sassatelli, P., Testa, V.: Properties of HVOF-sprayed TiC-FeCrAl coatings. Wear 418, 36–51 (2019)

    Article  Google Scholar 

  25. Kilic, M., Ozkan, D., Gok, M.S., Karaoglanli, A.C.: Room-and high temperature wear resistance of MCrAlY coatings deposited by detonation gun (D-gun) and supersonic plasma spraying (SSPS) techniques. Coatings 10(11), 1107 (2020)

    Article  Google Scholar 

  26. Swaminathan, S., Hong, S.M., Kumar, M., Jung, W.S., Kim, D.I., Singh, H., Choi, I.S.: Microstructural evolution and high temperature oxidation characteristics of cold sprayed Ni-20Cr nanostructured alloy coating. Surf. Coat. Technol. 362, 333–344 (2019)

    Article  Google Scholar 

  27. Li, Y.J., Dong, T.S., Fu, B.G., Li, G.L., Liu, Q.: Study of the microstructure and properties of cold sprayed NiCr coating. J. Mater. Eng. Perform. 30(12), 9067–9077 (2021)

    Article  Google Scholar 

  28. Kawahara, Y.: Development and application of high-temperature corrosion-resistant materials and coatings for advanced waste-to-energy plants. Mater. High Temp. 14(3), 261–268 (1997)

    Article  Google Scholar 

  29. Behera, N., Medabalimi, S., Ramesh, M.R.: Effect of impact angles and temperatures on the solid particle erosion behavior of HVOF sprayed WC-Co/NiCr/Mo and Cr3C2-CoNiCrAlY coatings. J. Therm. Spray Technol., pp. 1–15 (2023)

  30. Abyazi, A., Takht Kiyani, M.: Solid particle erosion wear characteristics of WC-reinforced ni-based coating deposited by oxy-acetylene flame welding. J. Therm. Spray Technol., pp. 1–18 (2023)

  31. Davis, J.R. ed.: Surface Engineering for Corrosion and Wear Resistance. ASM International (2001)

  32. Hutchings, I., Shipway, P.: Tribology: Friction and Wear of Engineering Materials. Butterworth-Heinemann (2017)

  33. Davis, J.R. ed.: Nickel, Cobalt, and their Alloys. ASM International (2000)

  34. Zhao, X., Cao, X., Zhang, J., Cao, H., Xie, Z., Xiong, N.: Numerical investigation and dimensionless erosion laws of solid particle erosion in plugged tees. Powder Technol. 402, 117342 (2022)

    Article  Google Scholar 

  35. Kuruvila, R., Kumaran, S.T., Khan, M.A., Uthayakumar, M.: Optimization of solid particle erosion of 2205 duplex stainless steel under air jet using Taguchi method. In IOP conference series: materials science and engineering (Vol. 1057, No. 1, p. 012073). IOP Publishing (2021)

  36. Sun, Y., Babaian-Kibala, E., Hernandez, S., Martin, J.W. and Alvarez, J.: Design and operations guidelines to avoid erosion problems in oil and gas production systems-one operator's approach. In: NACE CORROSION (pp. NACE-06592). NACE (2006)

  37. Alqallaf, J., Teixeira, J.A.: Numerical study of effects of solid particle erosion on compressor and engine performance. Results Eng. 15, 100462 (2022)

    Article  Google Scholar 

  38. Fu, Y., Hu, Y., Hu, C., Li, F., Li, C.: Erosion characteristics of molten aluminum droplets bouncing off solid walls in solid rocket motors. Acta Astronaut. 201, 431–444 (2022)

    Article  Google Scholar 

  39. Islam, M.A., Farhat, Z.N.: Effect of impact angle and velocity on erosion of API X42 pipeline steel under high abrasive feed rate. Wear 311(1–2), 180–190 (2014)

    Article  Google Scholar 

  40. Lopez, D., Congote, J.P., Cano, J.R., Toro, A., Tschiptschin, A.P.: Effect of particle velocity and impact angle on the corrosion–erosion of AISI 304 and AISI 420 stainless steels. Wear 259(1–6), 118–124 (2005)

    Article  Google Scholar 

  41. Singh, R., Tiwari, S.A., Mishra, S.K.: Cavitation erosion in hydraulic turbine components and mitigation by coatings: current status and future needs. J. Mater. Eng. Perform. 21, 1539–1551 (2012)

    Article  Google Scholar 

  42. Okonkwo, P.C., Mohamed, A.M.: Erosion-corrosion in oil and gas industry: a review. Int. J. Metall. Mater. Sci. Eng 4(3), 7–28 (2014)

    Google Scholar 

  43. Levy, A.V., Chik, P.: The effects of erodent composition and shape on the erosion of steel. Wear 89(2), 151–162 (1983)

    Article  Google Scholar 

  44. Lynn, R.S., Wong, K.K., Clark, H.M.: On the particle size effect in slurry erosion. Wear 149(1–2), 55–71 (1991)

    Article  Google Scholar 

  45. Clark, H.M., Hartwich, R.B.: A re-examination of the ‘particle size effect’in slurry erosion. Wear 248(1–2), 147–161 (2001)

    Article  Google Scholar 

  46. Turenne, S., Fiset, M., Masounave, J.: The effect of sand concentration on the erosion of materials by a slurry jet. Wear 133(1), 95–106 (1989)

    Article  Google Scholar 

  47. Tewari, U.S., Harsha, A.P., Häger, A.M., Friedrich, K.: Solid particle erosion of carbon fibre- and glass fibre-epoxy composites. Compos. Sci. Technol. 63(3–4), 549–557 (2003)

  48. Balamurugan, K., Shanmugam, V., Palani, G., Sundarakannan, R., Sathish, T., Linul, E., Khan, S.A., Asif, M.: Effect of TiC/RHA on solid particle erosion of Al6061 hybrid composites fabricated through a 2-step ultrasonic-assisted stir casting process. J. Market. Res. 25, 4888–4900 (2023)

    Google Scholar 

  49. Kuruvila, R., Kumaran, S.T., Uthayakumar, M., Khan, M.A., Ahmed, F.: Erosion behavior of plasma and DGun sprayed nichrome coatings on 2205 duplex stainless steel. Int. J. Interact. Des. Manuf., pp.1–15 (2023)

  50. Kuruvila, R., Kumaran, S.T., Khan, M.A.: Solid particle erosion behavior of nichrome coated duplex stainless steel. Int. J. Adv. Technol. Eng. Explor. 9(97), 1741 (2022)

    Google Scholar 

  51. Kuruvila, R., Sundaresan, T.K., Ahmed, F., Marimuthu, U.: Electrochemical corrosion behavior of thermally sprayed nichrome coating on duplex stainless steel. J. Test. Eval. 52(1) (2024)

  52. Benterki, S., Faci, A., Barka, B. and Rouabah, F., 2023. Evaluation and optimization of erosion parameters’ effects on polymeric glasses using Taguchi method. J. Mater. Eng. Perform., pp. 1–9.

  53. Choudhary, M., Sharma, A., Agarwal, P., Bhardwaj, A., Patnaik, A.: Optimization of solid particle erosion behaviour of waste marble dust filled glass fiber polymer composite using Taguchi approach. Mater. Today: Proc. 44, 4908–4912 (2021)

    Google Scholar 

  54. Kuruvila, R., Kumaran, S.T., Khan, M.A.: Optimization of erosion-corrosion behavior of nichrome coated 2205 duplex stainless steel using grey relational analysis. Surf. Rev. Lett. 29(07), 2250087 (2022)

    Article  Google Scholar 

  55. Sundararajan, G., Prasad, K.U.M., Rao, D.S., Joshi, S.V.: A comparative study of tribological behavior of plasma and D-gun sprayed coatings under different wear modes. J. Mater. Eng. Perform. 7, 343–351 (1998)

    Article  Google Scholar 

  56. Wood, R.J.K., Speyer, A.J.: Erosion–corrosion of candidate HVOF aluminium-based marine coatings. Wear 256(5), 545–556 (2004)

    Article  Google Scholar 

  57. Panakarajupally, R.P., Mirza, F., El Rassi, J., Morscher, G.N., Abdi, F., Choi, S.: Solid particle erosion behavior of melt-infiltrated SiC/SiC ceramic matrix composites (CMCs) in a simulated turbine engine environment. Compos. B Eng. 216, 108860 (2021)

    Article  Google Scholar 

  58. Sathish, T., Chandramohan, D., Vijayan, V., Sebastian, P.J.: Investigation on microstructural and mechanical properties of Cu reinforced with Sic composites prepared by microwave sintering process. J. New Mater. Electrochem. Syst. 22(1), 5–9 (2019)

    Google Scholar 

  59. Nagaraja, S., Nagegowda, K.U., Kumar V, A., Alamri, S., Afzal, A., Thakur, D., Kaladgi, A.R., Panchal, S., Saleel C.A.: Influence of the fly ash material inoculants on the tensile and impact characteristics of the aluminum AA 5083/7.5 SiC composites. Materials, 14(9), 2452 (2021)

  60. Al-Bukhaiti, M.A., Ahmed, S.M., Badran, F.M.F., Emara, K.M.: Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron. Wear 262(9–10), 1187–1198 (2007)

    Article  Google Scholar 

  61. Yang, S., Fan, J., Zhao, S., Dai, S., Han, L., Wang, J., Yang, S., Zhang, L., Li, J.: Experimental study on erosion behavior of fracturing pipelines involving fluctuating stress. Wear 518, 204626 (2023)

    Article  Google Scholar 

  62. Blach, J., Falat, L., Ševc, P.: Fracture characteristics of thermally exposed 9Cr–1Mo steel after tensile and impact testing at room temperature. Eng. Fail. Anal. 16(5), 1397–1403 (2009)

    Article  Google Scholar 

  63. Singh, J., Kumar, S., Mohapatra, S.K.: Study on solid particle erosion of pump materials by fly ash slurry using Taguchi’s orthogonal array. Tribologia-Finnish J. Tribol. 38(3–4), 31–38 (2021)

    Google Scholar 

  64. Kiragi, V.R., Patnaik, A., Singh, T., Fekete, G.: Parametric optimization of erosive wear response of TiAlN-coated aluminium alloy using Taguchi method. J. Mater. Eng. Perform. 28, 838–851 (2019)

    Article  Google Scholar 

  65. Gunaraj, V., Murugan, N.: Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J. Mater. Process. Technol. 88(1–3), 266–275 (1999)

    Article  Google Scholar 

  66. Srinivasan, R., Pridhar, T., Ramprasath, L.S., Charan, N.S., Ruban, W.: Prediction of tensile strength in FDM printed ABS parts using response surface methodology (RSM). Mater. Today: Proc. 27, 1827–1832 (2020)

    Google Scholar 

Download references

Funding

The work received no internal/external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thirumalai Kumaran.

Ethics declarations

Conflicts of interests

There is not any actual or potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuruvila, R., Thirumalai Kumaran, S. & Kurniawan, R. Optimization of solid particle erosion behavior of thermally sprayed nichrome on duplex stainless steel. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01799-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01799-x

Keywords

Navigation