Skip to main content
Log in

Mathematical modelling and development of response surfaces to predict and analyze the salt fog corrosion resistance of friction stir welded AA7075-T651 alloy joints: effect of retrogression and reaging

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

AA7075 is a heat treatable high strength aluminium alloy that finds applications in aerospace sector for structural parts and frames. This alloy has good mechanical properties. However, its inferior corrosion resistance and non-weldability limits its applications. In this investigation, the 10 mm thick plates of AA7075-T651 aluminium alloy were welded using friction stir welding (FSW) and subjected to the post weld heat treatment (PWHT) of retrogression and reaging (RRA). The corrosion resistance of stir zone (SZ) of joints was determined using a test of salt fog corrosion in unwelded, as-welded (AW) and RRA condition. The experimental matrix was designed using response surface methodology (RSM) by utilizing the design expert software. The joints were fabricated, heat treated and tested as per the experimental runs. The corrosion rate prediction (CRP) models were formulated using the regression methodology and validated using analysis of variance (ANOVA). The salt fog corrosion parameters were optimized to minimize the corrosion rate of SZ of joints. The SZ of joints showed lower corrosion rate of 01351 mm/year, 0.8756 mm/year and 0.6956 mm/year for unwelded, AW and RRA-treated condition when subjected to the salt fog corrosion environment of pH value of 7, spraying time of 72 h and Cl ion concentration of 0.6 Mol/lit. The AW and RRA-treated joints showed inferior corrosion resistance than unwelded base metal. The RRA-treated joints showed 20.55% reduction in corrosion rate of SZ of joints than AW joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors declare that the data that supports the findings of this study are available within this article.

References

  1. Venugopal, T., Rao, K.S., Rao, K.P.: Studies on friction stir welded AA 7075 aluminum alloy. Trans. Indian Inst. Met. 57(6), 659–663 (2004)

    CAS  Google Scholar 

  2. Feng, A.H., Chen, D.L., Ma, Z.Y.: Microstructure and cyclic deformation behavior of a friction-stir-welded 7075 Al alloy. Metall. Mater. Trans. A. 41, 957–971 (2010)

    Article  Google Scholar 

  3. Sonar, T., Balasubramanian, V., Malarvizhi, S.: Mitigation of heat treatment distortion of AA 7075 aluminum alloy by deep cryogenic processing using the Navy C-ring test. Mater. Testing 63(8), 758–763 (2021)

    Article  ADS  CAS  Google Scholar 

  4. Mao, Y., Ke, L., Chen, Y., Liu, F., Xing, L.: Inhomogeneity of microstructure and mechanical properties in the nugget of friction stir welded thick 7075 aluminum alloy joints. J. Mater. Sci. Technol. 34(1), 228–236 (2018)

    Article  CAS  Google Scholar 

  5. Mahoney, M.W., Rhodes, C.G., Flintoff, J.G., Bingel, W.H., Spurling, R.A.: Properties of friction-stir-welded 7075 T651 aluminum. Metall. Mater. Trans. A. 29, 1955–1964 (1998)

    Article  Google Scholar 

  6. Liu, J., Guo, F., Wang, T., Duan, S., Zou, Y.: Study on corrosion resistance of HAZ and TMAZ in friction stir welding joint of 7075 aluminum alloy by thermal simulation. Mater. Res. Express 10(1), 016505 (2023)

    Article  ADS  Google Scholar 

  7. Sonar, T., Ivanov, M., Trofimov, E., Tingaev, A., Suleymanova, I.: A critical review on solid-state welding of high entropy alloys–processing, microstructural characteristics and mechanical properties of joints. Defence Technol. (2023). https://doi.org/10.1016/j.dt.2023.08.001(InPress)

    Article  Google Scholar 

  8. Rajendran, C., Srinivasan, K., Balasubramanian, V., Sonar, T., Balaji, H.: Friction stir welding for manufacturing of a light weight combat aircraft structure. Mater. Test. 64(12), 1782–1795 (2022)

    Article  ADS  CAS  Google Scholar 

  9. Fratini, L., Buffa, G.: CDRX modelling in friction stir welding of aluminium alloys. Int. J. Mach. Tools Manuf 45(10), 1188–1194 (2005)

    Article  Google Scholar 

  10. Rao, T.S., Reddy, G.M., Rao, S.K.: Microstructure and mechanical properties of friction stir welded AA7075–T651 aluminum alloy thick plates. Trans. Nonferrous Metals Soc. China 25(6), 1770–1778 (2015)

    Article  CAS  Google Scholar 

  11. Threadgill, P.L., Leonard, A.J., Shercliff, H.R., Withers, P.J.: Friction stir welding of aluminium alloys. Int. Mater. Rev. 54(2), 49–93 (2009)

    Article  CAS  Google Scholar 

  12. Cam, G., Mistikoglu, S.: Recent developments in friction stir welding of Al-alloys. J. Mater. Eng. Perform. 23, 1936–1953 (2014)

    Article  CAS  Google Scholar 

  13. Yong-Jai, K.W.O.N., Seong-Beom, S.H.I.M., Dong-Hwan, P.A.R.K.: Friction stir welding of 5052 aluminum alloy plates. Trans. Nonferrous Metals Soc. China 19, s23–s27 (2009)

    Article  Google Scholar 

  14. Rodrigues, D.M., Leitão, C., Louro, R., Gouveia, H., Loureiro, A.: High speed friction stir welding of aluminium alloys. Sci. Technol. Weld. Join. 15(8), 676–681 (2010)

    Article  CAS  Google Scholar 

  15. Rambabu, G., Naik, D.B., Rao, C.V., Rao, K.S., Reddy, G.M.: Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints. Defence Technol. 11(4), 330–337 (2015)

    Article  Google Scholar 

  16. Babu, S., Elangovan, K., Balasubramanian, V., Balasubramanian, M.: Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints. Met. Mater. Int. 15, 321–330 (2009)

    Article  CAS  Google Scholar 

  17. Parasuraman, P., Sonar, T., Rajakumar, S.: Microstructure, tensile properties and fracture toughness of friction stir welded AA7075-T651 aluminium alloy joints. Mater. Test. 64(12), 1843–1850 (2022)

    Article  ADS  CAS  Google Scholar 

  18. Cavaliere, P., Nobile, R., Panella, F. W., & Squillace, A: Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding. Int. J. Mach. Tools Manuf 46(6), 588–594 (2006)

    Article  Google Scholar 

  19. De, P.S., Mishra, R.S.: Friction stir welding of precipitation strengthened aluminium alloys: scope and challenges. Sci. Technol. Weld. Join. 16(4), 343–347 (2011)

    Article  CAS  Google Scholar 

  20. Kadaganchi, R., Reddy, G.M., Gokhale, H.: Optimization of process parameters of aluminum alloy AA 2014–T6 friction stir welds by response surface methodology. Defence Technol. 11(3), 209–219 (2015)

    Article  Google Scholar 

  21. Mishra, R.S., Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. R. Rep. 50(1–2), 1–78 (2005)

    Article  Google Scholar 

  22. Flores, O.V., Kennedy, C., Murr, L.E., Brown, D., Pappu, S., Nowak, B.M., McClure, J.C.: Microstructural issues in a friction-stir-welded aluminum alloy. Scripta Mater. 38(5), 703–708 (1998)

    Article  CAS  Google Scholar 

  23. Su, J.Q., Nelson, T.W., Mishra, R., Mahoney, M.: Microstructural investigation of friction stir welded 7050–T651 aluminium. Acta Mater. 51(3), 713–729 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Barcellona, A., Buffa, G., Fratini, L., Palmeri, D.: On microstructural phenomena occurring in friction stir welding of aluminium alloys. J. Mater. Process. Technol. 177(1–3), 340–343 (2006)

    Article  CAS  Google Scholar 

  25. Yang, Y., Zhou, L.: Improving corrosion resistance of friction stir welding joint of 7075 aluminum alloy by micro-arc oxidation. J. Mater. Sci. Technol. 30(12), 1251–1254 (2014)

    Article  CAS  Google Scholar 

  26. Kumar, P.V., Reddy, G.M., Rao, K.S.: Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds–Effect of post weld heat treatment. Defence Technol. 11(4), 362–369 (2015)

    Article  Google Scholar 

  27. Navaser, M., Atapour, M.: Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy. J. Mater. Sci. Technol. 33(2), 155–165 (2017)

    Article  CAS  Google Scholar 

  28. Kumar, A., Sharma, S.K., Pal, K., Mula, S.: Effect of process parameters on microstructural evolution, mechanical properties and corrosion behavior of friction stir processed Al 7075 alloy. J. Mater. Eng. Perform. 26, 1122–1134 (2017)

    Article  CAS  Google Scholar 

  29. Joshi, A., Gope, A., Gope, P.C.: Effect of post-weld heat treatment on mechanical properties and fatigue crack growth behaviour of friction stir welded 7075–T651 Al alloy. Theoret. Appl. Fract. Mech. 123, 103714 (2023)

    Article  CAS  Google Scholar 

  30. Guo, F., Duan, S., Pan, Y., Wu, D., Matsuda, K., Wang, T., Zou, Y.: Stress corrosion behavior and microstructure analysis of Al-Zn-Mg-Cu alloys friction stir welded joints under different aging conditions. Corros. Sci. 210, 110821 (2023)

    Article  CAS  Google Scholar 

  31. Sunar, T., Özyürek, D.: A research on the effect of retrogression and re-aging heat treatment on hot tensile properties of AA7075 aluminum alloys. J. Manuf. Sci. Eng. 144(1), 011005 (2022)

    Article  Google Scholar 

  32. Rao, A.U., Vasu, V., Govindaraju, M., Srinadh, K.S.: Stress corrosion cracking behaviour of 7xxx aluminum alloys: a literature review. Trans. Nonferrous Metals Soc. China 26(6), 1447–1471 (2016)

    Article  CAS  Google Scholar 

  33. Paglia, C.S., Jata, K.V., Buchheit, R.G.: The influence of artificial aging on the microstructure, mechanical properties, corrosion, and environmental cracking susceptibility of a 7075 friction-stir-weld. Mater. Corros. 58(10), 737–750 (2007)

    Article  CAS  Google Scholar 

  34. Zieliński, A., Chrzanowski, J., Warmuzek, M., Gazda, A., Jezierska, E.: Influence of retrogression and reaging on microstructure, mechanical properties and susceptibility to stress corrosion cracking of an Al-Zn-Mg alloy. Mater. Corros. 55(2), 77–87 (2004)

    Article  Google Scholar 

  35. Ning, A.L., Liu, Z.Y., Peng, B.S., Zeng, S.M.: Redistribution and re-precipitation of solute atom during retrogression and reaging of Al-Zn-Mg-Cu alloys. Trans. Nonferrous Metals Soc. China 17(5), 1005–1011 (2007)

    Article  CAS  Google Scholar 

  36. Baydogan, M., Cimenoglu, H., Sabri Kayali, E., Rasty, J.: Improved resistance to stress-corrosion-cracking failures via optimized retrogression and reaging of 7075–T6 aluminum sheets. Metall. and Mater. Trans. A. 39(10), 2470–2476 (2008)

    Article  ADS  Google Scholar 

  37. Rajakumar, S., Muralidharan, C., Balasubramanian, V.: Optimization of the friction-stir-welding process and tool parameters to attain a maximum tensile strength of AA7075–T6 aluminium alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 224(8), 1175–1191 (2010)

    Article  Google Scholar 

  38. Lotfi, A.H., Nourouzi, S.: Effect of welding parameters on microstructure, thermal, and mechanical properties of friction-stir welded joints of AA7075-T6 aluminum alloy. Metall. and Mater. Trans. A. 45, 2792–2807 (2014)

    Article  ADS  CAS  Google Scholar 

  39. Farzadi, A., Bahmani, M., Haghshenas, D.F.: Optimization of operational parameters in friction stir welding of AA7075-T6 aluminum alloy using response surface method. Arab. J. Sci. Eng. 42, 4905–4916 (2017)

    Article  CAS  Google Scholar 

  40. Prabhuraj, P., Rajakumar, S., Balasubramanian, V., Sonar, T., Ivanov, M., & Elil Raja, D.: Effect of pH value, chloride ion concentration and salt spraying time on salt fog corrosion resistance of friction stir welded AA7075-T651 alloy joints. Int. J. Interactive Des. Manuf. (IJIDeM), 1–13 (2023).

  41. Prabhuraj, P., Rajakumar, S., Sonar, T., Ivanov, M., Rajkumar, I., Raja, D.E.: Effect of retrogression and reaging (RRA) on pitting and stress corrosion cracking (SCC) resistance of stir zone of high strength AA7075-T651 alloy joined by friction stir welding. Int. J. Lightweight Mater. Manuf. 6(2), 264–277 (2023)

    CAS  Google Scholar 

  42. Özer, G., Karaaslan, A.: Relationship of RRA heat treatment with exfoliation corrosion, electrical conductivity and microstructure of AA7075 alloy. Mater. Corros. 68(11), 1260–1267 (2017)

    Article  Google Scholar 

  43. Sonar, T., Balasubramanian, V., Malarvizhi, S., Venkateswaran, T., Sivakumar, D., Manjunath, A.: Multi-objective mathematical modeling and optimization of delta straight InterPulse-GTCAW parameters to predict and maximize performance of high temperature aerospace alloy sheets for structural applications. Forces Mech. 6, 100059 (2022)

    Article  Google Scholar 

  44. Ravichandran, M., Thirunavukkarasu, M., Sathish, S., Anandakrishnan, V.: Optimization of welding parameters to attain maximum strength in friction stir welded AA7075 joints. Mater. Test. 58(3), 206–210 (2022)

    Article  ADS  Google Scholar 

  45. Ramesha, K., Sudersanan, P.D., Santhosh, N., Jangam, S.: Design and optimization of the process parameters for friction stir welding of dissimilar aluminium alloys. Eng. Appl. Sci. Res. 48(3), 257–267 (2021)

    Google Scholar 

  46. Karthikeyan, R., Balasubramanian, V.: Statistical optimization and sensitivity analysis of friction stir spot welding process parameters for joining AA 7075 aluminum alloy. Exp. Tech. 37, 6–15 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Department of Science and Technology (DST), SERB Division, Government of India, New Delhi, under the Fast-Track Young Scientist Scheme to provide the financial support through a R&D Project No. SB/FTP/ETA-281/2012 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parasuraman Prabhuraj.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhuraj, P., Rajakumar, S., Sonar, T. et al. Mathematical modelling and development of response surfaces to predict and analyze the salt fog corrosion resistance of friction stir welded AA7075-T651 alloy joints: effect of retrogression and reaging. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01776-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01776-4

Keywords

Navigation