Skip to main content
Log in

Examination of electrochemical machining parameters for AA6082/ZrSiO4/SiC composite using Taguchi-ANN approach

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Aluminum alloy is a widely utilized material in the modern automotive industry due to its lightweight properties and corrosion resistance. Unconventional machining processes, particularly electrochemical machining (ECM) offer effective means to work with such materials. This study focuses on assessing the influence of four specific parameter combinations on the machining of AA6082/ZrSiO4/SiC alloy. This work also analyzes the impact of critical ECM process parameters, including tool feed rate, applied voltage, electrolytic concentration, and electrode type on the output response variables. These variables encompass characteristics such as material removal rate (MRR) and surface roughness (SR), and their relationships are explored through the application of the Taguchi design of experiments methodology. The analyzed experimental data were employed to train an Artificial Neural Network (ANN) model aimed at achieving more accurate predictions to increase the MRR and reduce SR. The ANN setup is a multilayer perceptron utilizing a feed forward architecture, denoted as (4–20–2). This notation indicates that there are 4 nodes in the input layer, twenty neurons in the hidden layers, and 2 nodes in the output layer. The ANN predictions yield an R2 value of 0.98003 and MSE within the range of 0.02413, specifically for the experiment dataset. The results of the regression study strongly indicate that the ANN model can effectively and reliably predict both MRR and SR with a high degree of precision. The scanning electron microscope (SEM) micrograph of the surface also indicates an improved surface finish with brass tool as compared to graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The findings presented in this research study are based on the data included within this article. If additional data or supplementary information is needed, we encourage interested individuals to reach out to the corresponding author for access.

References

  1. Agrawal, S., Agrawal, S., Kumar Kasdekar, D.: Optimization of MRR and electrolyte coating thickness of ECM parameters using PCA based GRA. Mater. Today Proc. 5(9), 18956–18965 (2018). https://doi.org/10.1016/j.matpr.2018.06.246

    Article  Google Scholar 

  2. Rajesh, S., Gobikrishnan, U., Krishnarjuna Rao, N., Balamurugan, R., Senthilkumar, K.M., Selvan, T.A., Madhankumar, S.: Electrochemical machining of aluminium 7075 alloy, silicon carbide, and fly ash composites: an experimental investigation of the effects of variables on material removal rate. Mater. Today Proc. 62, 863–867 (2022). https://doi.org/10.1016/j.matpr.2022.04.054

    Article  Google Scholar 

  3. Ramakrishna, M.V.A., Venugopal Rao, S.: Fabrication of ECM and study of its parameters in NaCl electrolyte. Mater. Today Proc. 46, 934–939 (2021). https://doi.org/10.1016/j.matpr.2021.01.181

    Article  Google Scholar 

  4. Ginestra, P., Ferraro, R.M., Zohar-Hauber, K., Abeni, A., Giliani, S., Ceretti, E.: Selective laser melting and electron beam melting of Ti6Al4V for orthopedic applications: a comparative study on the applied building direction. Materials 13(23), 5584 (2020). https://doi.org/10.3390/ma13235584

    Article  Google Scholar 

  5. Lowther, M., Louth, S., Davey, A., Hussain, A., Ginestra, P., Carter, L., Cox, S.: Clinical, industrial, and research perspectives on powder bed fusion additively manufactured metal implants. Addit. Manuf.. Manuf. 28, 565–584 (2019). https://doi.org/10.1016/j.addma.2019.05.033

    Article  Google Scholar 

  6. Demirtas, H., Yilmaz, O., Subasi, L., Gunaydin, A., Bilgin, G.M., Orhangul, A., Nesli, S.: Surface quality improvement using electro chemical machining process for γ-TiAl parts produced by electron beam melting. Procedia CIRP 102, 240–245 (2021). https://doi.org/10.1016/j.procir.2021.09.041

    Article  Google Scholar 

  7. Om Prakash, S., Jeyakumar, M., Sanjay Gandhi, B.: Parametric optimization on electro chemical machining process using PSO algorithm. Mater. Today Proc 62, 2332–2338 (2022). https://doi.org/10.1016/j.matpr.2022.04.141

    Article  Google Scholar 

  8. Selvan, T.A., SivaramKotha, M.N.V.S.A., SwamyChinamilli, N.V.S., Guru Dattatreya, G.S., Rajesh, S., Akshey, P.B., Madhankumar, S.: Taguchi-based grey relational study for multiple criterion optimization on process variables for micro electro-chemical machining of inconel super-alloy. Mater. Today Proc. 62, 882–888 (2022). https://doi.org/10.1016/j.matpr.2022.04.060

    Article  Google Scholar 

  9. Biswas, S., Paul, A.R., Dhar, A.R., Singh, Y., Mukherjee, M.: Multi-material modeling for wire electro-discharge machining of Ni-based superalloys using hybrid neural network and stochastic optimization techniques. CIRP J. Manuf. Sci. Technol. 41, 350–364 (2023). https://doi.org/10.1016/j.cirpj.2022.12.005

    Article  Google Scholar 

  10. Patnaik, P.K., Mishra, S.K., Swain, P.T.R., Purohit, A., Parija, S.K., Panda, S.S.: Multi-objective optimization and experimental analysis of electro-discharge machining parameters via Gray-Taguchi, TOPSIS-Taguchi and PSI-Taguchi methods. Mater. Today Proc. 62, 6189–6198 (2022). https://doi.org/10.1016/j.matpr.2022.05.087

    Article  Google Scholar 

  11. Wasif, M., Ahmed Khan, Y., Zulqarnain, A., Amir Iqbal, S.: Analysis and optimization of wire electro-discharge machining process parameters for the efficient cutting of Aluminum 5454 alloy. Alex. Eng. J. 61(8), 6191–6203 (2022). https://doi.org/10.1016/j.aej.2021.11.048

    Article  Google Scholar 

  12. Spedding, T.A., Wang, Z.Q.: Parametric optimization and surface characterization of wire electrical discharge machining process. Precis. Eng. 20(1), 5–15 (1997). https://doi.org/10.1016/s0141-6359(97)00003-2

    Article  Google Scholar 

  13. Huang, J.T., Liao, Y.S.: Optimization of machining parameters of Wire-EDM based on Grey relational and statistical analyses. Int. J. Prod. Res. 41(8), 1707–1720 (2003). https://doi.org/10.1080/1352816031000074973

    Article  Google Scholar 

  14. Rajurkar, K.P., Zhu, D., Wei, B.: Minimization of machining allowance in electrochemical machining. CIRP Ann. Manuf. Technol. 47(1), 165–168 (1998). https://doi.org/10.1016/s0007-8506(07)62809-1

    Article  Google Scholar 

  15. Kozak, J., Rajurkar, K.P., Makkar, Y.: Study of pulse electrochemical micromachining. J. Manuf. Process. 6(1), 7–14 (2004). https://doi.org/10.1016/s1526-6125(04)70055-9

    Article  Google Scholar 

  16. Geethapriyan, T., Kalaichelvan, K., Muthuramalingam, T.: Influence of coated tool electrode on drilling inconel alloy 718 in electrochemical micro machining. Procedia CIRP 46, 127–130 (2016). https://doi.org/10.1016/j.procir.2016.03.133

    Article  Google Scholar 

  17. Tang, L., Li, B., Yang, S., Duan, Q., Kang, B.: The effect of electrolyte current density on the electrochemical machining S-03 material. Int. J. Adv. Manuf. Technol. 71(9–12), 1825–1833 (2014)

    Article  Google Scholar 

  18. Dhobe, S.D., Doloi, B., Bhattacharyya, B.: Analysis of surface characteristics of titanium during ECM. Int. J. Mach. Mach. Mater. 10(4), 293 (2011)

    Google Scholar 

  19. “Notes on Electro Chemical Machining (ECM).” https://mechanicalengineering.blog/electro-chemical-machining-ecm/ (Accessed 06 Sep 2023).

  20. Antil, S.K., Antil, P., Singh, S., Kumar, A., Pruncu, C.I.: Artificial neural network and response surface methodology based analysis on solid particle erosion behavior of polymer matrix composites. Materials 13(6), 1381 (2020). https://doi.org/10.3390/ma13061381

    Article  Google Scholar 

  21. Senthilkumar, C., Ganesan, G., Karthikeyan, R.: Study of electrochemical machining characteristics of Al/SiCp composites. Int. J. Adv. Manuf. Technol. 43(3–4), 256–263 (2009). https://doi.org/10.1007/s00170-008-1704-1

    Article  Google Scholar 

  22. Thangamani, G., Thangaraj, M., Moiduddin, K., Mian, S.H., Alkhalefah, H., Umer, U.: Performance analysis of electrochemical micro machining of Titanium (Ti-6Al-4V) alloy under different electrolytes concentrations. Metals 11(2), 247 (2021). https://doi.org/10.3390/met11020247

    Article  Google Scholar 

  23. Mahawish, A., Ibrahim, S.I., Jawad, A.H., Othman, F.M.: Effect of adding silicon carbide and titanium carbide nanoparticles on the performance of the cement pastes. J. Civ. Environ. Eng. 07(04) (2017)

  24. Elmolla, E.S., Chaudhuri, M., Meselhy, M.: The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. J. Hazard. Mater. 179(1–3), 127–134 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.068

    Article  Google Scholar 

  25. Anderson, M.J.: RSM simplified, optimizing processes using response surface methods for design of experiments, 2nd ed., Productivity Press, New York, 2017. https://doi.org/10.1201/9781315382326

  26. Yetilmezsoy, K., Demirel, S.: Artificial neural network (ANN) approach for modeling of Pb (II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. J. Hazard. Mater. 153(3), 1288–1300 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.092

    Article  Google Scholar 

  27. Gugulothu, B., Karumuri, S., Vijayakumar, S., Muthuvel, B., Seetharaman, S., Jeyakrishnan, S., Saxena, K.K.: Optimization of TIG welding process parameters on chrome alloy steel using Box–Behnken method. Int. J. Interact. Des. Manuf. (IJIDeM) (2023). https://doi.org/10.1007/s12008-023-01531-1

    Article  Google Scholar 

  28. Karumuri, S., Haldar, B., Pradeep, A., Karanam, S.A.K., Sri, M.N.S., Anusha, P., Vijayakumar, S.: Multi-objective optimization using Taguchi based grey relational analysis in friction stir welding for dissimilar aluminium alloy. Int. J. Interact. Des. Manuf. (IJIDeM) (2023). https://doi.org/10.1007/s12008-023-01529-9

    Article  Google Scholar 

  29. Rajesh, M., Sri M.N.S., Jeyakrishnan, S., Anusha, P., Manikanta, J.E., Sateesh, N. et al.: Optimization parameters for electro discharge machining on Nimonic 80A alloy using grey relational analysis. Int. J. Interact. Des. Manuf. (IJIDeM). 2023.

  30. Rufina, R.D.J., Uthayakumar, H., Thangavelu, P.: Prediction of the size of green synthesized silver nanoparticles using RSM-ANN-LM hybrid modeling approach. Chem. Phys. Impact 6(100231), 100231 (2023). https://doi.org/10.1016/j.chphi.2023.100231

    Article  Google Scholar 

  31. Plumb, A.P., Rowe, R.C., York, P., Brown, M.: Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm. Eur. J. Pharm. Sci. 25(4–5), 395–405 (2005). https://doi.org/10.1016/j.ejps.2005.04.010

    Article  Google Scholar 

  32. Nanda, S.K., Tripathy, D.P., Nayak, S.K., Mohapatra, S.: Prediction of rainfall in india using artificial neural network (ANN) models. Int. J. Intell. Syst.Intell. Syst. 5(12), 1 (2013). https://doi.org/10.5815/ijisa.2013.12.01

    Article  Google Scholar 

  33. Gugulothu, B., Saminathan, R., Pradeep, A., Sharma, A., Vijayakumar, S., Paramasivam, P., Srinivasa Rao, N.: Investigating the strength of butt-welded joints of AA6082 and AA5052 alloys through friction stir welding; the impact of tool tilt angle and feed rate. J. Adhes. Sci. Technol.Adhes. Sci. Technol. (2023). https://doi.org/10.1080/01694243.2023.2253631

    Article  Google Scholar 

  34. Anusha, P., Sri, M.N.S., Vijayakumar, S., Rao, T.V.J., Paramasivam, P., Jeyakrishnan, S., Saxena, K.K.: Design and optimization the wear characteristics for Al7178/TiO2/B4C/FA central hybrid composite. Int. J. Interact. Des. Manuf. (IJIDeM) (2023). https://doi.org/10.1007/s12008-023-01341-5

    Article  Google Scholar 

  35. Gugulothu, B., Bharadwaja, K., Vijayakumar, S., Rao, T.V.J., Sri, M.N.S., Anusha, P., Agrawal, M.K.: Modeling and parametric optimization of electrical discharge machining on casted composite using central composite design. Int. J. Interact. Des. Manuf. (IJIDeM) (2023). https://doi.org/10.1007/s12008-023-01323-7

    Article  Google Scholar 

  36. Boopathy, G., Vanitha, V., Karthiga, K., Gugulothu, B., Pradeep, A., Pydi, H.P., Vijayakumar, S.: Optimization of tensile and impact strength for injection moulded nylon 66/SiC/B4c composites. J. Nanomater.Nanomater. 2022, 1–9 (2022). https://doi.org/10.1155/2022/4920774

    Article  Google Scholar 

  37. Pydi, H.P., Pasupulla, A.P., Vijayakumar, S., Indira, K.P.: Defect analysis and evaluation of mechanical properties of tig welded chrome alloy steel joints for high temperature applications. In: AIP conference proceedings (2022)

  38. Manickam, S., Pradeep, A., Vijayakumar, S., Mosisa, E.: Optimization of arc welding process parameters for joining dissimilar metals. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.06.548

    Article  Google Scholar 

  39. Pradeep, A., Kavitha, N., Janardhana Rao, T.V., Vijayakumar, S.: Influence of nano alumina/vegetable oil based cutting fluid on MQL turning of stainless steel 304. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.06.547

    Article  Google Scholar 

  40. Pydi, H.P., Pasupulla, A.P., Vijayakumar, S., Agisho, H.A.: Study on microstructure, behavior and Al2O3 content flux A-TIG weldment of SS-316L steel. Mater. Today Proc. 51, 728–734 (2022). https://doi.org/10.1016/j.matpr.2021.06.218

    Article  Google Scholar 

  41. Gugulothu, B., Nagarajan, N., Pradeep, A., Saravanan, G., Vijayakumar, S., Rao, J.: Analysis of mechanical properties for Al-MMC fabricated through an optimized stir casting process. J. Nanomater.Nanomater. 2022, 1–7 (2022). https://doi.org/10.1155/2022/2081189

    Article  Google Scholar 

  42. Pal, D., Vijayakumar, S., Rao, T.V.J., Babu, R.S.R.: An examination of the tensile strength, hardness and SEM analysis of Al 5456 alloy by addition of different percentage of SiC/flyash. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.02.288

    Article  Google Scholar 

  43. Sharma, P., Paramasivam, P., Bora, B.J., Sivasundar, V.: Application of nanomaterials for emission reduction from diesel engines powered with waste cooking oil biodiesel. Int. J. Low-Carbon Technol. 18, 795–801 (2023). https://doi.org/10.1093/ijlct/ctad060

    Article  Google Scholar 

  44. Bas, D., Dudak, F.C., Boyacı, I.H.: Modeling and optimization III: reaction rate estimation using artificial neural network (ANN) without a kinetic model. J. Food Eng. 79(2), 622–628 (2007). https://doi.org/10.1016/j.jfoodeng.2006.02.021

    Article  Google Scholar 

  45. Vijayakumar, S., Arunkumar, A., Pradeep, A., Satishkumar, P., Singh, B., Rama Raju, K.S., Sharma, V.K.: Optimization of process variables for shielded metal arc welding dissimilar mild steel and medium carbon steel joints. J. Adhes. Sci. Technol.Adhes. Sci. Technol. (2023). https://doi.org/10.1080/01694243.2023.2227461

    Article  Google Scholar 

  46. Dombaycı, Ö.A., Gölcü, M.: Daily means ambient temperature prediction using artificial neural network method: a case study of Turkey. Renew. Energy 34(4), 1158–1161 (2009). https://doi.org/10.1016/j.renene.2008.07.007

    Article  Google Scholar 

  47. Vijayakumar, S., Anitha, S., Arivazhagan, R., Hailu, A.D., Rao, T.V.J., Pydi, H.P.: Wear investigation of aluminum alloy surface layers fabricated through friction stir welding method. Adv. Mater. Sci. Eng. 2022, 1–8 (2022). https://doi.org/10.1155/2022/4120145

    Article  Google Scholar 

  48. Nasr, M.S., Moustafa, M.A.E., Seif, H.A.E., El, G.: Kobrosy, application of artificial neural network (ANN) for the prediction of EL-AGAMY wastewater treatment. Alex. Eng. J. 51(1), 37–43 (2012). https://doi.org/10.1016/j.aej.2012.07.005

    Article  Google Scholar 

  49. Somasundaram, M., Saravanathamizhan, R., Basha, C.A., Nandakumar, V., Begum, S.N., Kannadasan, T.: Recovery of copper from scrap printed circuit board: modelling and optimization using response surface methodology. Powder Technol. 266, 1–6 (2014). https://doi.org/10.1016/j.powtec.2014.06.006

    Article  Google Scholar 

  50. Sapkal, R.T., Shinde, S.S., Mahadik, M.A., Mohite, V.S., Waghmode, T.R., Govindwar, S.P., Rajpure, K.Y., Bhosale, C.H.: Photoelectrocatalytic decolorization and degradation of textile effluent using ZnO thin films. J. Photochem. Photobiol. B Biol. 114, 102–107 (2012). https://doi.org/10.1016/j.jphotobiol.2012.05.016

    Article  Google Scholar 

  51. Paramasivam, P., Vijayakumar, S.: Mechanical characterization of aluminium alloy 6063 using destructive and non-destructive testing. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.04.312

    Article  Google Scholar 

  52. Gugulothu, B., Satheesh Kumar, P.S., Srinivas, B., Ramakrishna, A., Vijayakumar, S.: Investigating the material removal rate parameters in ECM for Al 5086 alloy-reinforced silicon carbide/flyash hybrid composites by using Minitab-18. Adv. Mater. Sci. Eng. 2021, 1–6 (2021). https://doi.org/10.1155/2021/2079811

    Article  Google Scholar 

  53. Rani, P., Mishra, R.S., Mehdi, H.: Effect of nano-sized Al2O3 particles on microstructure and cmechanical properties of aluminum matrix composite fabricated by multipass FSW. Part C J. Mech. Eng. Sci. (SAGE) (2022). https://doi.org/10.1177/09544062221110822

    Article  Google Scholar 

  54. Mehdi, H., Mehmood, A., Chinchkar, A., Hashmi, A.W., Malla, C., Mohapatra, P.: Optimization of process parameters on the mechanical properties of AA6061/Al2O3 nanocomposites fabricated by multi-pass friction stir processing. Mater. Today Proc. 56(4), 1995–2003 (2021). https://doi.org/10.1016/j.matpr.2021.11.333

    Article  Google Scholar 

  55. Jain, S., Mishra, R.S., Mehdi, H.: Influence of SiC microparticles and multi-pass FSW on weld quality of the AA6082 and AA5083 dissimilar joints. SILICON (2023). https://doi.org/10.1007/s12633-023-02455-x

    Article  Google Scholar 

  56. Hashmi, A.W., Mehdi, H., Mishra, R.S., Mohapatra, P., Kant, N., Kumar, R.: Mechanical properties and microstructure evolution of AA6082/Sic nanocomposite processed by multi-pass FSP. Trans. Indian Inst. Met. 75, 2077–2090 (2022). https://doi.org/10.1007/s12666-022-02582-w

    Article  Google Scholar 

  57. Mehdi, H., Mishra, R.S.: Consequence of reinforced SiC particles on microstructural and mechanical properties of AA6061 surface composites by multi-pass FSP. J. Adhes. Sci. Technol.Adhes. Sci. Technol. 36(12), 1279–1298 (2022). https://doi.org/10.1080/01694243.2021.1964846

    Article  Google Scholar 

  58. Mehdi, H., Mishra, R.S.: Effect of multi-pass friction stir processing and SiC nanoparticles on microstructure and mechanical properties of AA6082-T6. Adv. Ind. Manuf. Eng. 3, 100062 (2021). https://doi.org/10.1016/j.aime.2021.100062

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to KIT-Kalaignar Karunanidhi Institute of Technology, Coimbatore, India, for their invaluable technical support during the entire course of this experimental research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Subbiah.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest related to the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srividya, K., Ravichandran, S., Thirunavukkarasu, M. et al. Examination of electrochemical machining parameters for AA6082/ZrSiO4/SiC composite using Taguchi-ANN approach. Int J Interact Des Manuf 18, 1459–1473 (2024). https://doi.org/10.1007/s12008-024-01761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-024-01761-x

Keywords

Navigation