Skip to main content

Advertisement

Log in

Optimization modelling of spark plasma sintering parameters of SS316-B4C composite

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Process parameter optimisation is often performed to improve process efficiency and cost-effectiveness. To fabricate stainless steel (SS316)-10 wt% boron carbide (B4C) composite, spark plasma sintering is being researched for the process parameter optimisation of temperature, pressure, dwell time, and heating rate. The sintering operation was carried out utilising the grey relational analysis and an analysis of variance to determine the impacts of the response variables micro-hardness and density. The spark plasma sintering technique is used to solidify the composite powders under a wide range of conditions, including temperatures of 800 °C, 900 °C, and 1000 °C; pressures of 60 MPa, 70 MPa, and 80 MPa; dwell times of 5 min, 10 min, and 15 min; and heating rates of 100 °C/min, 200 °C/min, and 300 °C/min. Scanning electron microscopy, Micro Vickers hardness testing, and Archimedes-based density testing are being used to examine the microstructure, hardness, and density of sintered compacts. The findings revealed that the sintering temperature and pressure had a significant influence on the compacts’ properties. The ideal circumstances for spark plasma sintering parameters in this research include 900 °C temperature, 70 MPa pressure, 10 min of dwell time, and a heat rate of 200 °C/min, resulting in a high density of 7.35 g/cm3 and an optimum level of microhardness of 1450 HV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Misra, R.D.K., Kumar, B.R., Somani, M., Karjalainen, P.: Deformation processes during tensile straining of ultrafine/nanograined structures formed by reversion in metastable austenitic steels. Scripta Mater. 59(1), 79–82 (2008)

    Article  Google Scholar 

  2. Cho, K.H., Lee, W.G., Lee, S.B., Jang, H.: Corrosion resistance of chromized 316L stainless steel for PEMFC bipolar plates. J. Power Sources. 178(2), 671–676 (2008)

    Article  Google Scholar 

  3. Shih, C.-C., Shih, C.-M., Su, Y.-Y., Su, L.H.J., Chang, M.-S.: Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corros. Sci. 46(2), 427–441 (2004)

    Article  Google Scholar 

  4. Bonnet, G., Rohr, V., Chen, X.-G., Bernier, J.-L., Chiocca, R., Issard, H.: Use of Alcan’s Al-B4C metal matrix composites as neutron absorber material in TN International’s transportation and storage casks. Packaging Transp. Storage Secur. Radioactive Mater. 20(3), 98–102 (2009)

    Article  Google Scholar 

  5. A.Pozdniakov, V.S., Zolotorevskiy, R., Yu Barkov, A., Lotfy, Bazlov, A.I.: Microstructure and material characterization of 6063/B4C and 1545K/B4C composites produced by two stir casting techniques for nuclear applications. J. Alloys Compd. 664, 317–320 (2016)

    Article  Google Scholar 

  6. Canakci, A., Arslan, F.: Effect of volume fraction and size of B4C particles on production and microstructure properties of B4C reinforced aluminium alloy composites. Mater. Sci. Technol. 29(8), 954–960 (2013)

    Article  Google Scholar 

  7. Saxena, M., Sharma, A.K., Srivastava, A.K.: Narendra Singh, and Amit Rai Dixit. An investigation for minimizing the wear loss of microwave-assisted synthesized g-C3N4/MoS2 nanocomposite coated substrate. " Coat. 13(1), 118 (2023)

    Article  Google Scholar 

  8. Saxena, M., Sharma, A.K., Srivastava, A.K., Singh, R.K., Dixit, A.R., Nag, A.: Microwave-assisted synthesis, characterization and Tribological Properties of a g-C3N4/MoS2 nanocomposite for low Friction Coatings. " Coat. 12(12), 1840 (2022)

    Article  Google Scholar 

  9. Baradeswaran, A., Elaya Perumal, A.: Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos. Part B: Eng. 54, 146–152 (2013)

    Article  Google Scholar 

  10. Das, A., Harimkar, S.P.: Effect of graphene nanoplate and silicon carbide nanoparticle reinforcement on mechanical and tribological properties of spark plasma sintered magnesium matrix composites. J. Mater. Sci. Technol. 30(11), 1059–1070 (2014)

    Article  Google Scholar 

  11. Diouf, S., Molinari, A.: Densification mechanisms in spark plasma sintering: Effect of particle size and pressure. Powder Technol. 221, 220–227 (2012)

    Article  Google Scholar 

  12. Lin, S.: Microstructure and abrasive behaviors of TiC-316L composites prepared by warm compaction and microwave sintering. Adv. Powder Technol. 23(3), 419–425 (2012)

    Article  Google Scholar 

  13. Suárez, M., Fernández, A., Menéndez, J.L., Torrecillas, R., Kessel, H.U., Hennicke, J., Kirchner, R., Kessel, T.: Challenges and opportunities for spark plasma sintering: A key technology for a new generation of materials. Sinter. Appl. 13, 319–342 (2013)

    Google Scholar 

  14. Weston, N.S., Derguti, F., Tudball, A., Jackson, M.: Spark plasma sintering of commercial and development titanium alloy powders. J. Mater. Sci. 50, 4860–4878 (2015)

    Article  Google Scholar 

  15. Feng, H., Zhou, Y., Jia, D., Meng, Q.: Rapid synthesis of Ti alloy with B addition by spark plasma sintering. Mater. Sci. Engineering: A. 390(1–2), 344–349 (2005)

    Article  Google Scholar 

  16. ASweet, G., Brochu, M., Hexemer, R.L. Jr., Donaldson, I.W., Bishop, D.P.: “Consolidation of aluminum-based metal matrix composites via spark plasma sintering.“ Materials Science and Engineering: A. 648, 123–133 (2015)

    Google Scholar 

  17. Liu, P.S., Chen, G.-F.: Porous Materials: Processing and Applications. Elsevier (2014)

  18. FYang, Y., Qian, M.: Spark plasma sintering and hot pressing of titanium and titanium alloys. In Titanium powder metallurgy. Butterworth-Heinemann. 1, 219–235 (2015)

    Google Scholar 

  19. Sweet, G.A., Brochu, M., R.L., H. Jr., Donaldson, I.W.: Bishop.Consolidation of Aluminium-based metal matrix composites via spark plasma sintering. J. Mater. Sci. Eng. A. 648, 123–133 (2015)

    Article  Google Scholar 

  20. Xie, G., Ohashi, O., Song, M., Furuya, K., Noda, T.: Behavior of oxide film at the interface between particles in sintered Al powders by pulse electric-current sintering. Metall. Mater. Trans. A. 34, 699–703 (2003)

    Article  Google Scholar 

  21. Guo, B., Song, M., Yi, J., Ni, S., Shen, T., Du, Y.: Improving the mechanical properties of carbon nanotubes reinforced pure aluminum matrix composites by achieving non-equilibrium interface. Mater. Design. 120, 56–65 (2017)

    Article  Google Scholar 

  22. Ricote, J., Algueró, M.: and Daniel Chateigner. “Tailoring of the elastic properties by texture control in ferroelectric thin films for MEMS.“ In Materials Science Forum, 426(4), 3433–3438, 2003. (1999)

  23. Jeffrey, J.A., Kumar, S.S., Hariharan, P., Kamesh, M., Raj, A.M.: Production and assessment of AZ91 reinforced with nano SiC through stir casting process. Inside MS. 1048, 9–14 (2022)

    Google Scholar 

  24. Sauthoff, G.: Deformation Behaviour of the intermetallic phase Al3Nb with DO22 structure and of the Al3Nb-base alloys. Part. II: Creep Behaviour " Intermetallics. 4(5), 377–385 (1996)

    Google Scholar 

  25. Jiang, K.T.E.D., Yao, W., Ritchie, R.O.: Mukherjee. Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. " Acta materialia. 60(2), 622–632 (2012)

    Article  Google Scholar 

  26. Sun, W.-Q., Hu, G., Yu, X.-H., Shi, J., Xu, H., Wu, R.-J., He, C.: Qiang Yi, and Hua-Si Hu. Study on a high-boron-content stainless steel composite for nuclear radiation. Materials. 14(22), 7004 (2021)

    Article  Google Scholar 

  27. Liu, Z.Y., Xiao, B.L., Ma, Z.Y.: “Fabrication of CNTs-Al composites with enhanced dispersion pre-treatment.“ In 18th ICCM international conference on composite materials, Korea. (2011)

  28. Yang, X., Zou, T., Shi, C., Liu, E., He, C., Zhao, N.: Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites. Mater. Sci. Engineering: A. 660, 11–18 (2016)

    Article  Google Scholar 

  29. Esawi, A.M.K., Morsi, A., Sayed, A., Taher, M., Lanka, S.: Effect ofCNTs content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 70, 2237–2241 (2010)

    Article  Google Scholar 

  30. Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Engineering: R: Rep. 74(10), 281–350 (2013)

    Article  Google Scholar 

  31. Robinoand, C.V., Cieslak, M.J.: High-temperature metallurgy of advanced borated stainless steels. Metall. Mater. Trans. A. 26, 1673–1685 (1995)

    Article  Google Scholar 

  32. Van Dong, Pham, N.H., Phan, S., Patil, S., Shirguppikar, S., Kalel: Le Thi Phuong Thanh, and do Minh Hien. Effect of boron carbide reinforcement on properties of stainless-steel metal matrix composite for nuclear applications. J. Mech. Behav. Mater. 31(1), 390–397 (2022)

    Article  Google Scholar 

  33. Pagounis, E., Lindroos, V.K.: Processing and properties of particulate reinforced steel matrix composites. Mater. Sci. Engineering: A. 246(1–2), 221–234 (1998)

    Article  Google Scholar 

  34. Oke, S.R., Ige, O.O., Falodun, O.E., Okoro, A.M., Mphahlele, M.R., Olubambi, P.A.: Powder metallurgy of stainless steels and composites: A review of mechanical alloying and spark plasma sintering. Int. J. Adv. Manuf. Technol. 102, 3271–3290 (2019)

    Article  Google Scholar 

  35. Sharifi, E., Mohammad, F., Karimzadeh, Enayati, M.H.: Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites. Mater. Design. 32(6), 3263–3271 (2011)

    Article  Google Scholar 

  36. Ikumapayi, O.M., Kazeem, R.A., Lekan, T., Popoola, Opeyeolu, T., Laseinde, Sunday, A., Afolalu, N.C., Nwala, S.A., Akinlabi, Esther, T.: Akinlabi. Development and assessment of african star seed (Chrysophyllum albidum) oil-based cutting fluid in turning AA6061 using Taguchi grey relational approach. Int. J. Interact. Des. Manuf. (IJIDeM), 1–16, (2022)

  37. Rathod, N.J., Chopra, M.K., Santosh, N., Shelke, P.K., Chaurasiya, R., Kumar: Kuldeep Kumar Saxena, and Chander Prakash. Investigations on hard turning using SS304 sheet metal component grey based Taguchi and regression methodology. Int. J. Interact. Des. Manuf. (IJIDeM), 1–12, (2023)

  38. Pandey, B., Mahto, S.: and B. K. Jha. Analysis and optimization in hard turning of titanium grade-I using grey relational analysis. Int. J. Interact. Des. Manuf. (IJIDeM), 1–13, (2022)

  39. Jadhav, P., Mohanty, C.: Comparative analysis of indirect, direct and hybrid cryogenic machining of Nimonic C-263 superalloy. J. Eng. Res., 10 (4B), (2022)

  40. Garud, K.S., Moo-Yeon, L.: Grey relational based Taguchi analysis on heat transfer performances of direct oil spray cooling system for electric vehicle driving motor. Int. J. Heat Mass Transf. 201, 123596 (2023)

    Article  Google Scholar 

  41. Ogbonna, O., Simeon, S.A., Akinlabi, N., Madushele, O.S., Fatoba, Akinlabi, E.T.: Grey-based taguchi method for multi-weld quality optimization of gas metal arc dissimilar joining of mild steel and 316 stainless steel. Results in Engineering. 17, 100963 (2023)

    Article  Google Scholar 

  42. Raghunath, N., Pandey, P.M.: Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering. Int. J. Mach. Tools Manuf,47(6),985 – 95,2007.

  43. Das, S.K., Sahoo, P.: Tribological characteristics of electroless Ni–B coating and optimization of coating parameters using Taguchi based grey relational analysis. Mater. Design. 32(4), 2228–2238 (2011)

    Article  Google Scholar 

  44. Yang, W.P., Tarng, Y.S.: Design optimization of cutting parameters for turning operations based on the Taguchi method. J. Mater. Process. technology”. 84(1–3), 122–129 (1998)

    Article  Google Scholar 

  45. Oketola, A., Jamiru, T., TAdegbola, A., Ogunbiyi, O., Sadiku, R., Salifu, S.: Influence of sintering temperature on the microstructure, mechanical and tribological properties of ZrO2 reinforced spark plasma sintered Ni–Cr. Int. J. Lightweight Mater. Manuf., 5(2),188 – 96,2022.

  46. Baranidharan, K., Kumaran, S.T., Uthayakumar, M., Parameswaran, P., Babu, D.A.: EBSD analysis of spark plasma sintered SS316-B4C composite. Micron, 166,103401, (2023)

  47. Ujah, C.O., Popoola, A.P., Popoola, O.M., Aigbodion, V.S.: Optimisation of spark plasma sintering parameters of Al-CNTs-Nb nano-composite using Taguchi Design of Experiment. Int. J. Adv. Manuf. Technol. 100, 1563–1573 (2019)

    Article  Google Scholar 

  48. Althahban, S., Pathinettampadian, G., Qahtani, F., Jazaa, Y., Mousa, S., Devi, S.A., De Poures, M.V., Subbiah, R., Mamo, H.B.: Process optimization of Spark plasma sintering parameters for Tungsten Carbide/Silicon Nitride/AA2219 composites by Taguchi Method”. 2022(1), 2022.

  49. Kang, P., Zhao, Q., Guo, S., Xue, W., Liu, H., Chao, Z., Jiang, L., Wu, G.: Optimisation of the spark plasma sintering process for high volume fraction SiCp/Al composites by orthogonal experimental design. Ceram. Int. 47(3), 3816–3825 (2021)

    Article  Google Scholar 

  50. Canpolat, O., Çanakçı, A., Erdemir, F.: Evaluation of microstructure, mechanical, and corrosion properties of SS316L/Al2O3 composites produced by hot pressing. Mater. Chem. Phys. 280, 12582–12586 (2022)

    Article  Google Scholar 

  51. Chaira, D.: Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering. Mater. Charact. 99, 220–229 (2015)

    Article  Google Scholar 

  52. Ijadi, A., Nayebi, B., Parvin, N., Kaflou, A.: Characteristics of porous SS316L: Influences of the sn additive on the interfacial phenomena during the pressureless sintering. Mater. Chem. Phys. 295, 127100 (2023)

    Article  Google Scholar 

  53. Singh, H., Patrange, P., Saxena, P., Yogesh, M.: Puri. Multi-objective optimization of the process parameters in Electric Discharge Machining of 316L Porous Stainless. Steel Using Metaheuristic Techniques.“ Materials. 15(19), 65–71 (2022)

    Google Scholar 

  54. Xiu, Z., Yang, W., Dong, R., Hussain, M., Jiang, L., Liu, Y., Wu, G.: Microstructure andmechanical properties of 45 vol.% SiCp/7075Al composite. J. Mater. Sci. Technol. 31, 930–934 (2015)

    Article  Google Scholar 

  55. Soy, U., Demir, A., Findik, F.: Friction and wear behaviors of Al-SiC‐B4C composites produced by pressure infiltration method. Industrial Lubrication and Tribology. 63(5), 387–393 (2011)

    Article  Google Scholar 

  56. Klier, M., Eric, A., Mortensen, J.A., Cornie, Flemings, M.C.: Fabrication of cast particle-reinforced metals via pressure infiltration. J. Mater. Sci. 26, 2519–2526 (1991)

    Article  Google Scholar 

  57. Demir, A., Altinkok, N.: Effect of gas pressure infiltration on microstructure and bending strength of porous Al2O3/SiC-reinforced aluminium matrix composites. Compos. Sci. Technol., 64(13–14), 2067-74, 2004.

  58. Lu, S.L., Meenashisundaram, G.K., Wang, P., Nai, S.M.L., Wei, J.: The combined influence of elevated pre-sintering and subsequent bronze infiltration on the microstructures and mechanical properties of 420 stainless steel additively manufactured via binder jet printing. Additive Manuf. 34, 101266 (2020)

    Article  Google Scholar 

  59. Ha, J.L., Kung, Y.S., Hu, S.C., Fung, R.F.: Optimal design of a micro-positioning Scott-Russell mechanism by Taguchi method. Sens. Actuators A: Phys.,10125 (2), 565–5722006

  60. Zang, Z., Nakamura, A., Temmyo, J.: Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application notice of redundant publication. Opt. Express. 27(21), 304–349 (2019)

    Article  Google Scholar 

  61. Zang, Z., Nakamura, A., Temmyo, J.: Single cuprous oxide filmssynthesized by radical oxidation at low temperature for PVapplication. J. Opt. Express, 21(9),11448–114562013

  62. Kuruvila, Roshan, S., Thirumalai Kumaran, Adam Khan, M.: Optimization of ErosionCorrosionBehaviorOf nichrome coated 2205 duplex Stainless Steel using Grey Relational Analysis. Int. J. Innov. Technol. Manage. (IJITM), 29(7),1–162022

  63. Baranidharan, K., Thirumalai Kumaran, S., Uthayakumar, M., Parameswaran, P.: Electrochemical polarisation studies on spark plasma sintered SS316-B4C composite. Surf. Rev. Lett. (2023)

  64. Sivaiah, P., Chakradhar, D.: Multi-objective optimisation of cryogenic turning process using Taguchi-based grey relational analysis. Int. J. Mach. Mach. Mater. 19(4), 297–312 (2017)

    Google Scholar 

  65. Tiwari, A., Kumar, Sudhansu Sekhar Panda: Optimization of process parameters in ECDM machining using Taguchi based grey relation analysis. Measurement. 216, 112971 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank UGC-DAE CSR for their financial support to carry out this work (CSRKN/CRS-115/2018-19/1053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thirumalai Kumaran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranidharan, K., Kumaran, S.T., Uthayakumar, M. et al. Optimization modelling of spark plasma sintering parameters of SS316-B4C composite. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01509-z

Keywords

Navigation