Skip to main content

Advertisement

Log in

Optimization using genetic algorithm of GMAW parameters for Charpy impact test of 080M40 steel

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Gas Metal Arc Welding popularly known as Metal Inert Gas (MIG) is a welding technique widely in the industries for the joining purposes. The objective of this paper is to explore near-optimal MIG welding parameters such as voltage and current using genetic algorithm technique. These optimized parameters will result in maximum impact energy of the weldment which is determined using Charpy impact test. Initially an experimental study was conducted on EN8 (080M40) steel specimens through MIG welding process. The samples were machined, prepared and organized for tests. One specimen was cut and polished as per the requirement of Charpy impact test. Remaining samples were first cut then welded using different values of welding parameters (voltage and current). After wards these welded samples also went through Charpy impact testing. The filler wire used is AWSA5.18, ER70S-6 for welding purposes. Further, the other samples were machined for the Charpy impact test as suggested by American Society for Testing and Materials A370 10 mm × 10 mm ×55 mm with a 45°, 2 mm deep V notch at the center having a base radius of 0.25 mm. For analyzing the results through MATLAB, the neural network is utilized. The Analysis of Variance (ANOVA) is applied to find the optimal welding quality of the material. Further, Genetic Algorithms is using current as 70A–100A and voltage with the range from 9.6 to 10.7 V to find optimum weld parameters. ANOVA was implemented to get the most significant factors which affect the response parameters. The value of R2 is greater than 0.90 which implies that welding parameters were optimum. The optimum parameter for welding current and voltage is 100A and 9.6 V. Further, after implementing optimum parameters the optimal result for impact energy is 32.82 J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7

Similar content being viewed by others

References

  1. Thangarasu, S.K., Shankar, S., Mohanraj, T., Devendran, K.: Tool wear prediction in hard turning of EN8 steel using cutting force and surface roughness with artificial neural network. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 234(1), 329–342 (2020). https://doi.org/10.1177/0954406219873932

    Article  Google Scholar 

  2. Dubey, Y., Sharma, P., Singh, M.P.: Effect of TIG welding on Al alloy, Mg alloy, and stainless steel - a review. Int. J. Mech. Eng. 7(3), 808–821 (2022)

    Google Scholar 

  3. Thaer, F., Sultan, A.L.: Influence of fracture parameter on the shear lips for 080M40 carbon steel in Charpy-V impact resistance at different temperatures. Eng. Technol. J. 36A(6), 646–651 (2018). https://doi.org/10.30684/etj.36.6A.8

    Article  Google Scholar 

  4. Moleejane, C.M., Sanusi, K.O., Ayodele, O.L., Oliver, G.J.: Microstructural features and mechanical behaviour of unalloyed medium carbon steel (EN8 Steel) after subsequent heat treatment. In: Proceedings of the World Congress on Engineering and Computer Science 2014, 2, WCECS 2014, San Francisco, USA, 22–24 (2014)

  5. Oyyaravelu, R., Kuppan, P., Arivazhagan, N.: Comparative study on metallurgical and mechanical properties of laser and laser-arc-hybrid welding of HSLA steel. J. Adv. Res. 5(5), 463–472 (2018). https://doi.org/10.1016/j.matpr.2018.02.253

    Article  Google Scholar 

  6. Tiejun, W.: A continuum damage model for ductile fracture of weld heat affected zone. Eng. Fract. Mech. 40(6), 1075–1082 (1991). https://doi.org/10.1016/0013-7944(91)90172-W

    Article  Google Scholar 

  7. Rahul, M., Shivprakasam, S.P., Vishnu, B.R., Balasubramanian, K.R., Mohan, S.: Health issue owing to exposure with welding fumes and their control strategies at the source–a review. Mater. Today Proceed. 46(19), 9239–9245 (2021). https://doi.org/10.1016/j.matpr.2020.01.516

    Article  Google Scholar 

  8. Chennaiah, M.B., Kumar, P.N., Rao, K.P.: Influence of heat input and PWHT on the microstructure and mechanical properties in dissimilar (IS2062-EN8) welded joints. Procedia Comput. Sci. 85, 54–61 (2016). https://doi.org/10.1016/j.procs.2016.05.176

    Article  Google Scholar 

  9. Shah, M., Ray, D., Thakkar, J., Patel, D., Prajapati, R.B.: Parametric optimization on MIG welded EN8 material joints by using Taguchi method. Int. J. Sci. Res. Develop. 1(9), 1847–1850 (2013)

    Google Scholar 

  10. Civjan, S.A., Guihan, T., Peterman, K.: Testing of oxyacetylene weld strength. J. Const. Steel. Res. 168, 105921 (2020). https://doi.org/10.1016/j.jcsr.2019.105921

    Article  Google Scholar 

  11. Sharma, P., Bashar, S., Joshi, P., Raja, T.A., Sahu, S.K., Reddy, M.S., Naik, M.R.: Optimization on process parameter on AA8052 friction stir welding using Taguchi’s method. Adv. Mater. Sci. Eng. 1, 1–8 (2022). https://doi.org/10.1155/2022/3048956

    Article  Google Scholar 

  12. Ibrahim, I.A., Mohamat, S.A., Amir, A., Ghalib, A.: The effect of gas metal arc welding (GMAW) processes on different welding parameters. Proced. Eng. 41, 1502–2150 (2012). https://doi.org/10.1016/j.proeng.2012.07.342

    Article  Google Scholar 

  13. Singh, S., Kumar, V., Kumar, S., Kumar, A.: Variant of MIG welding of similar and dissimilar metals: A review. Mater. Today Proceed. 56(6), 3550–3555 (2022). https://doi.org/10.1016/j.matpr.2021.11.287

    Article  Google Scholar 

  14. Kartal, M., Molak, R., Turski, M., Gungor, S., Fitzpatrick, M.E., Edwards, L.: Determination of weld metal mechanical properties utilising novel tensile testing methods. Appl. Mech. Mater. 7(8), 127–132 (2007). https://doi.org/10.4028/www.scientific.net/AMM.7-8.127

    Article  Google Scholar 

  15. Kanemaru, S., Sasaki, T., Sato, T., Mishimam, H., Tashiro, S., Tanaka, M.: Study for TIG–MIG hybrid welding process. Weld. World 58, 11–18 (2013). https://doi.org/10.2207/qjjws.31.18s

    Article  Google Scholar 

  16. Ghosh, N., Pal, P.K., Nandi, G.: Parametric optimization of MIG welding on 316L austenitic stainless steel by grey-based Taguchi method. Procedia Technol. 25, 1038–1048 (2016). https://doi.org/10.1016/j.protcy.2016.08.204

    Article  Google Scholar 

  17. Biswas, P., Kundu, A., Mondal, D., Bardhan, P.K.: Effect of heat treatment on microstructure behavior and hardness of EN 8 steel. IOP Conf. Ser. Mater. Sci. Eng. 377(1), 1–6 (2018). https://doi.org/10.1088/1757-899X/377/1/012065

    Article  Google Scholar 

  18. Srivastava, K., Sinha, A.A., Sahani, R.: Effect of heat treatment on hardness and toughness of EN8 steel. Mater. Today Proceed. 42, 1297–1303 (2021). https://doi.org/10.1016/j.matpr.2020.12.1015

    Article  Google Scholar 

  19. Moleejane, C.M., Sanusi, K.O., Ayodele, A., Oliver, G.: Microstructural features and mechanical behavior of unalloyed medium carbon steel (EN8 steel) after subsequent heat treatment. In: Proceedings of the World Congress on Engineering and Computer Science 2014, 2, WCECS 2014, San Francisco, USA, 22–24 (2014)

  20. Khamaria, B., Gunjib, B., Karak, S.K., Biswal, B.B.: Variation of microstructural and mechanical properties with respect to polarity in shielded metal arc welding of mild steel. Int. J. Math. Eng. Manag. Sci. 4, 521–530 (2019). https://doi.org/10.33889/IJMEMS.2019.4.2-042

    Article  Google Scholar 

  21. Adedayo, S., Odebiyi, O.S., Oseni, G.L.: Effect of parallel heating on properties of a welded AISI 8438 steel. Ann. Fac. Eng. Hunedoara Int. J. Eng. 11(3), 321–324 (2013)

    Google Scholar 

  22. Balasubramanian, V., Varahamoorthy, R., Ramachandran, C.S., Muralidhavan, C.: Selection of the welding process for hard facing on carbon steels based on quantitative and qualitative factors. Int. J. Adv. Manuf. Technol. 40, 887–897 (2009). https://doi.org/10.1007/s00170-008-1406-8

    Article  Google Scholar 

  23. Cvetkovski, S., Slavkov, D., Magdes, J.: Welding procedure specification for arc welding of st 52–3N steel plates with covered electrodes. In Proceedings of 3rd BMC-2003-Ohrid, Republic of Macedonia, 152–160 (2003)

  24. Kumar, R., Arya, H.K., Saxena, R.K.: Effect of cooling rate on microstructure of saw welded mild steel plate (Grade C 25 as per IS 1570). Int. J. Mod. Eng. Res. 4(1), 222–228 (2014)

    Google Scholar 

  25. Samir, M.: Investigation on effect of heat input on cooling rate and mechanical property (hardness) of mild steel weld joint by MMAW Process. Int. J. Mod. Eng. Res. 5(3), 34–41 (2015)

    Google Scholar 

  26. Singh, R.P.: Parametric effect on mechanical properties in submerged arc welding process-a review. Int. J. Eng. Sci. Technol. 4(2), 747–757 (2012)

    Google Scholar 

  27. Lala, S.D., Biswas, A., Debbarma, J., Deoghare, A.B.: Study of hardness of the weld bead formed by partial hybrid welding by metal inert gas welding and submerged arc welding at three different heat inputs. Mater. Today: Proceed. 5(5), 13650–13657 (2018). https://doi.org/10.1016/j.matpr.2018.04.003

    Article  Google Scholar 

  28. Sudipto, C., Shanmugarajan, B., Ghosal, S., Padmanabham, G.: Application of integrated soft computing techniques for optimisation of hybrid CO2 laser–MIG welding process. Appl. Soft Comput. 30, 365–374 (2015). https://doi.org/10.1016/j.asoc.2015.01.045

    Article  Google Scholar 

  29. Dey, V., Pratihar, D.K., Dattaa, G.L., Jhab, M.N., Sahab, T.K., Bapat, A.V.: Optimization of bead geometry in electron beam welding using a genetic algorithm. J. Mater. Process. Technol. 209, 1151–1157 (2009). https://doi.org/10.1016/j.jmatprotec.2008.03.019

    Article  Google Scholar 

  30. Vasudevan, M., Bhaduri, A.K., Baldev, R., Rao, P.K.: Genetic algorithm based computational models for optimizing the process parameters of a TIG welding to achieve target bead geometry in type 304 L(N) and 316 L(N) stainless steels. Mater. Manuf. Process. 22, 641–649 (2007). https://doi.org/10.1080/10426910701323342

    Article  Google Scholar 

  31. Kim, D., Rhee, S., Park, H.: Modeling and optimization of a GMA welding process by genetic algorithm and response surface methodology. Int. J. Prod. Res. 40(7), 1699–1711 (2002). https://doi.org/10.1080/00207540110119964

    Article  Google Scholar 

  32. Correia, D.S., Gongalves, C.V., Sebastiao Junior, S.C., Ferraresi, V.A.: GMAW welding optimization using genetic algorithms. J. Braz. Soc. Mech. Sci. Eng. 26(1), 28–31 (2004). https://doi.org/10.1590/s1678-58782004000100005

    Article  Google Scholar 

  33. Italodo, V.T., Fernando, H.G.C., Shoaib, S., Danil, Y.P., Munish, K.G., Giuseppe, P.: Investigations on quality characteristics in gas tungsten arc welding process using artificial neural network integrated with genetic algorithm. Int. J. Adv. Manuf. Technol. 113, 3569–3583 (2021). https://doi.org/10.1007/s00170-021-06846-5

    Article  Google Scholar 

  34. Correia, D.S., Goncalves, C.V., DaCunha, S.S., Ferraresi, V.A.: Comparison between genetic algorithms and response surface methodology in GMAW welding optimization. J. Mater. Process. Technol. 160, 70–76 (2005). https://doi.org/10.1016/j.jmatprotec.2004.04.243

    Article  Google Scholar 

  35. Arunkumar, S.P., Prabha, C., Saminathan, R., Khamaj, J.A., Viswanath, M., Ivan, C.K.P., Subbiah, R., Kumar, P.M.: Taguchi optimization of metal inert gas (MIG) welding parameters to withstand high impact load for dissimilar weld joints. Mater. Today Proceed. 56(3), 1411–1417 (2022). https://doi.org/10.1016/j.matpr.2021.11.619

    Article  Google Scholar 

  36. Rodriguez, B.R., Miranda, A., Gonzalez, D., Praga, R., Hurtado, E.: Maintenance of the austenite/ferrite ratio balance in GTAW DSS joints through process parameters optimization. Materials 13(780), 2–14 (2020). https://doi.org/10.3390/ma13030780

    Article  Google Scholar 

  37. Dey, V., Pratihar, D.K., Datta, G.L., Jha, M.N., Saha, T.K., Bapat, A.V.: Optimization of bead geometry in electron beam welding using a genetic algorithm. J. Mater. Process. Technol. 209, 1151–1157 (2009). https://doi.org/10.1016/j.jmatprotec.2008.03.019

    Article  Google Scholar 

  38. Prabhu, C., Jayaraman, M., Rajnikanth, M.: Experimental investigation into fatigue behaviour of En- 8 Steel (080m40/Aisi 1040) subjected to heat treatment and shot peening processes. Trans. Famena 43, 125–136 (2019). https://doi.org/10.21278/TOF.43308

    Article  Google Scholar 

  39. Ron, T., Levy, G.K., Dolev, O., Leon, A., Shirizly, A., Aghion, E.: The effect of microstructural imperfections on corrosion fatigue of additively manufactured ER70S-6 alloy produced by wire arc deposition. Metals 10(98), 2–10 (2020). https://doi.org/10.3390/met10010098

    Article  Google Scholar 

  40. Kanemaru, S., Sasaki, T., Sato, T., Mishima, H., Tashiro, S., Tanaka, M.: Study for TIG–MIG hybrid welding process. Weld World 58, 11–18 (2013). https://doi.org/10.2207/qjjws.31.18s

    Article  Google Scholar 

  41. Kamiya, H., Fujita, T., Enjo, Y.K.: Oxygen content and fracture toughness on MIG weld metal of SUS 304 steel. Quart J Japan Weld Soc 3(3), 138–145 (1985). https://doi.org/10.2207/qjjws.3.574

    Article  Google Scholar 

  42. Rossoll, A., Berdin, C., Prioul, C.: Determination of the fracture toughness of a low alloy steel by the instrumented Charpy impact test. Int. J. Fract. 115, 205–226 (2002). https://doi.org/10.1023/a:1016323522441

    Article  Google Scholar 

  43. Sun, Y., Li, Y., Qi, Y., Cai, X., Ma, C.: Microstructure and mechanical properties of welded joints between nickel base alloy and 10Ni5CrMoV steel by MIG welding. Mater. Lett. 328, 133120 (2022). https://doi.org/10.1016/j.matlet.2022.133120

    Article  Google Scholar 

  44. Ogbonna, O.S., Akinlabi, S.A., Madushele, N., Fatoba, O.S., Akinlabi, E.T.: Grey-based Taguchi method for multi-weld quality optimization of gas metal arc dissimilar joining of mild steel and 316 stainless steel. Res. Eng. 17, 100963 (2023). https://doi.org/10.1016/j.rineng.2023.100963

    Article  Google Scholar 

  45. Khrais, S.K., Hmoud, H.A., Abdel-Al, A.R., Darabseh, T.: Investigation the effect of welding parameters on mechanical properties of AISI 316L by Metal Inert Gas (MIG). Res. Square (2022). https://doi.org/10.21203/rs.3.rs-2256047/v1

    Article  Google Scholar 

  46. Chandrasekar, G., Kailasanathan, C., Vasundara, M.: Investigation on un-peened and laser shock peened dissimilar weldments of Inconel 600 and AISI 316L fabricated using activated-TIG welding technique. J. Manuf. Process 35, 466–478 (2018). https://doi.org/10.1016/j.jmapro.2018.09.004

    Article  Google Scholar 

  47. Sunilkumar, D., Muthukumaran, S., Vasudevan, M., Reddy, M.G.: Effect of friction stir and activated-GTA welding processes on the 9Cr–1Mo steel to 316LN stainless steel dissimilar weld joints. Sci. Technol. Weld. Join. 25(4), 311–319 (2020). https://doi.org/10.1080/13621718.2019.1695347

    Article  Google Scholar 

  48. Ghumman, K.Z., Ali, S., EmadUdDin, M., Mubasakar, A., Khan, N.B., Ahmed, S.W.: Experimental investigation of effect of welding parameters on surface roughness, micro-hardness and tensile strength of AISI 316L stainless steel welded joints using 308L filler material by TIG welding. J Mat. Rech. Tech. 21, 220–236 (2022). https://doi.org/10.1016/j.jmrt.2022.09.016

    Article  Google Scholar 

  49. Kim, D., Rhee, S.: Optimization of arc welding process parameters using a genetic algorithm. Weld. J. 80(7), 184–189 (2001)

    Google Scholar 

  50. Sette, S., Boullart, L., Langenhove, L.: Optimising a production process by a neural network/genetic algorithm approach. Engng. Applic. Artif. Intell. 9(6), 681–689 (1996). https://doi.org/10.1016/s0952-1976(96)00062-0

    Article  Google Scholar 

  51. Busacca, P.G., Marseguerra, M., Zio, E.: Multiobjective optimization by genetic algorithms: application to safety systems. Reliab. Eng. Syst. Saf. 72, 59–74 (2001). https://doi.org/10.1016/s0951-8320(00)00109-5

    Article  Google Scholar 

  52. Dhas, J.E.R., Dhas, S.J.H.: A review on optimization of welding process. Proced. Eng. 38, 544–554 (2012). https://doi.org/10.1016/j.proeng.2012.06.068

    Article  Google Scholar 

  53. Naik, A.B., Reddy, A.C.: Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA). Therm. Sci. Eng. Prog. 8, 327–339 (2018). https://doi.org/10.1016/j.tsep.2018.08.005

    Article  Google Scholar 

  54. Giridharan, P.K., Murugan, N.: Optimization of pulsed GTA welding process parameters for the welding of AISI 304L stainless steel sheets. Int. J. Adv. Manuf. Technol. 40, 478–489 (2009). https://doi.org/10.1007/s00170-008-1373-0

    Article  Google Scholar 

  55. Karpagaraj, A., Shanmugam, N.S., Sankaranarayanasamy, K.: Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets. Mater. Sci. Eng., A 640, 180–189 (2015). https://doi.org/10.1016/j.msea.2015.05.056

    Article  Google Scholar 

  56. Reddy, G.N., Venkataramana, M.: Optimization of process parameters in welding of dissimilar steels using robot TIG welding. IOP Conf. Ser. Mater. Sci. Eng. 330(1), 012096 (2018). https://doi.org/10.1088/1757-899X/330/1/012096

    Article  Google Scholar 

  57. Juang, S.C., Tarng, Y.S.: Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel. J. Mater. Process. Technol. 122(1), 33–37 (2002). https://doi.org/10.1016/S0924-0136(02)00021-3

    Article  Google Scholar 

  58. Mubiayi, M.P., Akinlabi, E.T., Makhatha, M.E.: Microstructure evolution and statistical analysis of Al/Cu friction-stir spot welds. Mater. Technol. 51(5), 861–869 (2017). https://doi.org/10.17222/mit.2016.320

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Dubey.

Ethics declarations

Conflict of interest

All the authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, Y., Sharma, P. & Singh, M.P. Optimization using genetic algorithm of GMAW parameters for Charpy impact test of 080M40 steel. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01371-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01371-z

Keywords

Navigation