Skip to main content
Log in

An MCDM approach for multi-response optimisation of machining parameters in turning of EN8 steel (AISI-1040) for sustainable manufacturing

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The study aims to obtain a sustainable solution in terms of material removal rate (MRR, cm3/min), surface roughness (Ra, μm), resultant cutting force (F, Newton), and noise level (NL, dBA) as performance measures to improve sustainability in turning process using an integrated MEREC-PIV multi-criteria decision-making (MCDM) method based on L27 orthogonal array (OA) experimental design with three input parameters, i.e., cutting speed (A, 250, 300 & 350 m/min), depth of cut (B, 0.1, 0.3 & 0.5 mm), and feed rate (C, 0.05, 0.25 & 0.45 mm/rev). S/N ratio and ANOM based analysis are also utilized to determine the optimal process parameters for the cumulative target. MEREC based criteria weighting analysis indicates that MRR is the most significant performance measure for the considered domain of input parameters, followed by Ra, F, and NL. The PIV approach, S/N ratio analysis, and ANOM show that the best sustainable alternative is input parameter combination A3B3C3, which is 350 m/min, 0.5 mm, and 0.45 mm/rev. ANOM results show that all four performance measures are highly susceptible to feed rate followed by the depth of cut and cutting speed. ANOVA results reveal that all three input parameters and the feed-depth of cut interaction affect the response significantly. The confirmatory test confirms the optimal input parameter settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Imad, M., Hopkins, C., Hosseini, A., Yussefian, N.Z., Kishawy, H.A.: Intelligent machining: a review of trends, achievements and current progress. Int. J. Comput. Integr. Manuf. 35(4–5), 359–387 (2022). https://doi.org/10.1080/0951192X.2021.1891573

    Article  Google Scholar 

  2. Ghobakhloo, M.: The future of manufacturing industry: a strategic roadmap toward Industry 4.0. J. Manuf. Technol. Manag. 29(6), 910–936 (2018). https://doi.org/10.1108/JMTM-02-2018-0057

    Article  Google Scholar 

  3. Jawahir, I.S., Schoop, J., Kaynak, Y., Balaji, A.K., Ghosh, R., Lu, T.: Progress toward modeling and optimization of sustainable machining processes. J. Manuf. Sci. Eng. (2020). https://doi.org/10.1115/1.4047926

    Article  Google Scholar 

  4. Korkmaz, M.E., Gupta, M.K.: A state of the art on simulation and modelling methods in machining: future prospects and challenges. Arch. Comput. Methods Eng. (2022). https://doi.org/10.1007/s11831-022-09794-9

    Article  Google Scholar 

  5. Marini, D., Corney, J.R.: Concurrent optimization of process parameters and product design variables for near net shape manufacturing processes. J. Intell. Manuf. 32(2), 611–631 (2021). https://doi.org/10.1007/s10845-020-01593-y

    Article  Google Scholar 

  6. Zhao, G.Y., Liu, Z.Y., He, Y., Cao, H.J., Guo, Y.B.: Energy consumption in machining: classification, prediction, and reduction strategy. Energy 133, 142–157 (2017). https://doi.org/10.1016/j.energy.2017.05.110

    Article  Google Scholar 

  7. Herrmann, C., Schmidt, C., Kurle, D., Blume, S., Thiede, S.: Sustainability in manufacturing and factories of the future. Int. J. Precis. Eng. Manuf. Green Technol. 1(4), 283–292 (2014). https://doi.org/10.1007/s40684-014-0034-z

    Article  Google Scholar 

  8. Hegab, H.A., Darras, B., Kishawy, H.A.: Towards sustainability assessment of machining processes. J. Clean. Prod. 170, 694–703 (2018). https://doi.org/10.1016/j.jclepro.2017.09.197

    Article  Google Scholar 

  9. Pimenov, D.Y., et al.: Resource saving by optimization and machining environments for sustainable manufacturing: a review and future prospects. Renew. Sustain. Energy Rev. 166, 112660 (2022). https://doi.org/10.1016/j.rser.2022.112660

    Article  Google Scholar 

  10. Bhanot, N., Qaiser, F.H., Alkahtani, M., Rehman, A.U.: An integrated decision-making approach for cause-and-effect analysis of sustainable manufacturing indicators. Sustainability 12(4), 1517 (2020). https://doi.org/10.3390/su12041517

    Article  Google Scholar 

  11. Stojčić, M., Zavadskas, E., Pamučar, D., Stević, Ž, Mardani, A.: Application of MCDM methods in sustainability engineering: a literature review 2008–2018. Symmetry 11(3), 350 (2019). https://doi.org/10.3390/sym11030350

    Article  Google Scholar 

  12. Chowdhury, P., Paul, S.K.: Applications of MCDM methods in research on corporate sustainability: a systematic literature review. Manag. Environ. Qual. Int. J. 31(2), 385–405 (2020). https://doi.org/10.1108/MEQ-12-2019-0284

    Article  Google Scholar 

  13. Pereira, J.L.J., Oliver, G.A., Francisco, M.B., Cunha, S.S., Gomes, G.F.: A review of multi-objective optimization: methods and algorithms in mechanical engineering problems. Arch. Comput. Methods Eng. 29(4), 2285–2308 (2022). https://doi.org/10.1007/s11831-021-09663-x

    Article  Google Scholar 

  14. Kumar, A., et al.: A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 69, 596–609 (2017). https://doi.org/10.1016/j.rser.2016.11.191

    Article  Google Scholar 

  15. Das, P.P., Tiwary, A.P., Chakraborty, S.: A hybrid MCDM approach for parametric optimization of a micro-EDM process. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00869-2

    Article  Google Scholar 

  16. Kalita, K., Pal, S., Haldar, S., Chakraborty, S.: A hybrid TOPSIS-PR-GWO approach for multi-objective process parameter optimization. Process Integr. Optim. Sustain. (2022). https://doi.org/10.1007/s41660-022-00256-0

    Article  Google Scholar 

  17. Duc Trung, D.: A combination method for multi-criteria decision-making problem in turning process. Manuf. Rev. 8, 26 (2021). https://doi.org/10.1051/mfreview/2021024

    Article  Google Scholar 

  18. Sharma, R.C., Dabra, V., Singh, G., Kumar, R., Singh, R.P., Sharma, S.: Multi-response optimization while machining of stainless steel 316L using intelligent approach of grey theory and grey-TLBO. World J. Eng. 19(3), 329–339 (2022). https://doi.org/10.1108/WJE-06-2020-0226

    Article  Google Scholar 

  19. Chakraborty, S., Chakraborty, S.: A scoping review on the applications of MCDM techniques for parametric optimization of machining processes. Arch. Comput. Methods Eng. 29(6), 4165–4186 (2022). https://doi.org/10.1007/s11831-022-09731-w

    Article  Google Scholar 

  20. Bhat, P., Agrawal, C., Khanna, N.: Development of a sustainability assessment algorithm and its validation using case studies on cryogenic machining. J. Manuf. Mater. Process. 4(2), 42 (2020). https://doi.org/10.3390/jmmp4020042

    Article  Google Scholar 

  21. Divya, C., Raju, L.S., Singaravel, B.: Application of MCDM methods for process parameter optimization in turning process—a review. In: Recent Trends in Mechanical Engineering, Singapore, pp. 199–207 (2021). https://doi.org/10.1007/978-981-15-7557-0_18

  22. Bhanot, N., Rao, P.V., Deshmukh, S.G.: An integrated sustainability assessment framework: a case of turning process. Clean Technol. Environ. Policy 18(5), 1475–1513 (2016). https://doi.org/10.1007/s10098-016-1130-2

    Article  Google Scholar 

  23. Gok, A.: A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA. Measurement 70, 100–109 (2015). https://doi.org/10.1016/j.measurement.2015.03.037

    Article  Google Scholar 

  24. Park, H.-S., Nguyen, T.-T., Dang, X.-P.: Multi-objective optimization of turning process of hardened material for energy efficiency. Int. J. Precis. Eng. Manuf. 17(12), 1623–1631 (2016). https://doi.org/10.1007/s12541-016-0188-4

    Article  Google Scholar 

  25. Balasubramaniyan, S., Selvaraj, T.: Application of integrated Taguchi and TOPSIS method for optimization of process parameters for dimensional accuracy in turning of EN25 steel. J. Chin. Inst. Eng. 40(4), 267–274 (2017). https://doi.org/10.1080/02533839.2017.1308233

    Article  Google Scholar 

  26. Kumar, R., Bilga, P.S., Singh, S.: Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation. J. Clean. Prod. 164, 45–57 (2017). https://doi.org/10.1016/j.jclepro.2017.06.077

    Article  Google Scholar 

  27. Majumder, H., Saha, A.: Application of MCDM based hybrid optimization tool during turning of ASTM A588. Decis. Sci. Lett. (2018). https://doi.org/10.5267/j.dsl.2017.6.003

    Article  Google Scholar 

  28. Bagaber, S.A., Yusoff, A.R.: Energy and cost integration for multi-objective optimisation in a sustainable turning process. Measurement 136, 795–810 (2019). https://doi.org/10.1016/j.measurement.2018.12.096

    Article  Google Scholar 

  29. La Fé Perdomo, I., Quiza, R., Haeseldonckx, D., Rivas, M.: Sustainability-focused multi-objective optimization of a turning process. Int. J. Precis. Eng. Manuf. Green Technol. 7(5), 1009–1018 (2020). https://doi.org/10.1007/s40684-019-00122-4

    Article  Google Scholar 

  30. Karaaslan, F., Şahinoğlu, A.: Determination of ideal cutting conditions for maximum surface quality and minimum power consumption during hard turning of AISI 4140 steel using TOPSIS method based on fuzzy distance. Arab. J. Sci. Eng. 45(11), 9145–9157 (2020). https://doi.org/10.1007/s13369-020-04635-y

    Article  Google Scholar 

  31. Fernando, R., Gamage, J., Karunathilake, H.: Sustainable machining: environmental performance analysis of turning. Int. J. Sustain. Eng. 15(1), 15–34 (2022). https://doi.org/10.1080/19397038.2021.1995524

    Article  Google Scholar 

  32. Sristi, N.A., Zaman, P.B., Dhar, N.R.: Multi-response optimization of hard turning parameters: a comparison between different hybrid Taguchi-based MCDM methods. Int. J. Interact. Des. Manuf. 16(4), 1779–1795 (2022). https://doi.org/10.1007/s12008-022-00849-6

    Article  Google Scholar 

  33. Emovon, I., Oghenenyerovwho, O.S.: Application of MCDM method in material selection for optimal design: a review. Results Mater. 7, 100115 (2020). https://doi.org/10.1016/j.rinma.2020.100115

    Article  Google Scholar 

  34. Singh, M., Pant, M.: A review of selected weighing methods in MCDM with a case study. Int. J. Syst. Assur. Eng. Manag. 12(1), 126–144 (2021). https://doi.org/10.1007/s13198-020-01033-3

    Article  Google Scholar 

  35. Vassoney, E., Mammoliti Mochet, A., Desiderio, E., Negro, G., Pilloni, M.G., Comoglio, C.: Comparing multi-criteria decision-making methods for the assessment of flow release scenarios from small hydropower plants in the alpine area. Front. Environ. Sci. 9, 635100 (2021). https://doi.org/10.3389/fenvs.2021.635100

    Article  Google Scholar 

  36. Belton, V., Stewart, T.J.: Implementation of MCDA: practical issues and insights. In: Belton, V., Stewart, T.J. (eds.) Multiple Criteria Decision Analysis: An Integrated Approach, pp. 261–292. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-1495-4_9

    Chapter  Google Scholar 

  37. de Aires, R.F.F., Ferreira, L.: The rank reversal problem in multi-criteria decision making: a literature review. Pesqui. Oper. 38(2), 331–362 (2018). https://doi.org/10.1590/0101-7438.2018.038.02.0331

    Article  Google Scholar 

  38. Mufazzal, S., Muzakkir, S.M.: A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals. Comput. Ind. Eng. 119, 427–438 (2018)

    Article  Google Scholar 

  39. Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E.K., Turskis, Z., Antucheviciene, J.: Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry 13(4), 525 (2021). https://doi.org/10.3390/sym13040525

    Article  Google Scholar 

  40. Alswat, H.M., Mativenga, P.T.: Extended model for selection of optimum turning conditions based on minimum energy considerations. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2020). https://doi.org/10.1177/0954405420937558

    Article  Google Scholar 

  41. Pacella, M.: A new low-feed chip breaking tool and its effect on chip morphology. Int. J. Adv. Manuf. Technol. 104(1–4), 1145–1157 (2019). https://doi.org/10.1007/s00170-019-03961-2

    Article  Google Scholar 

  42. Bauccio, M.: ASM Metals Reference Book, 3rd edn. ASM International, Russell Township (1993). (ISBN 9780871704788)

    Google Scholar 

  43. Şahinoğlu, A., Rafighi, M.: Optimization of cutting parameters with respect to roughness for machining of hardened AISI 1040 steel. Mater. Test. 62(1), 85–95 (2020). https://doi.org/10.3139/120.111458

    Article  Google Scholar 

  44. SK, T., Shankar, S.: Tool wear prediction in hard turning of EN8 steel using cutting force and surface roughness with artificial neural network. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 234(1), 329–342 (2020). https://doi.org/10.1177/0954406219873932

    Article  Google Scholar 

  45. Makhesana, M.A., Bhatt, Y.H., Mawandiya, B.K., Patel, K.M.: Optimization of MQL parameters and experimental investigations using vegetable oil-based cutting fluid during machining of AISI 4140. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00909-x

    Article  Google Scholar 

  46. Abbas, A.T., et al.: Sustainability assessment associated with surface roughness and power consumption characteristics in nanofluid MQL-assisted turning of AISI 1045 steel. Int. J. Adv. Manuf. Technol. 105(1–4), 1311–1327 (2019). https://doi.org/10.1007/s00170-019-04325-6

    Article  Google Scholar 

  47. Singaravel, B., Selvaraj, T.: Multi criteria optimisation using analytic hierarchy process in turning operation. Int. J. Mach. Mach. Mater. 19(3), 218–229 (2017). https://doi.org/10.1504/IJMMM.2017.084005

    Article  Google Scholar 

  48. Alajmi, M.S., Almeshal, A.M.: Modeling of cutting force in the turning of AISI 4340 using Gaussian process regression algorithm. Appl. Sci. 11(9), 4055 (2021). https://doi.org/10.3390/app11094055

    Article  Google Scholar 

  49. Qiu, J.: Modeling of cutting force coefficients in cylindrical turning process based on power measurement. Int. J. Adv. Manuf. Technol. 99(9–12), 2283–2293 (2018). https://doi.org/10.1007/s00170-018-2610-9

    Article  Google Scholar 

  50. Kuntoğlu, M., et al.: A review of indirect tool condition monitoring systems and decision-making methods in turning: critical analysis and trends. Sensors 21(1), 108 (2020). https://doi.org/10.3390/s21010108

    Article  Google Scholar 

  51. Mohamed, A., Hassan, M., M’Saoubi, R., Attia, H.: Tool condition monitoring for high-performance machining systems—a review. Sensors 22(6), 2206 (2022). https://doi.org/10.3390/s22062206

    Article  Google Scholar 

  52. Abainia, S., Ouelaa, N.: Predicting the dynamic behaviour of the turning tool vibrations using an experimental measurement, numerical simulation and analytical modelling for comparative study. Int. J. Adv. Manuf. Technol. 115(7–8), 2533–2552 (2021). https://doi.org/10.1007/s00170-021-07275-0

    Article  Google Scholar 

  53. Dahlstrom, D.L.: Occupational noise. In: Hamilton & Hardy’s Industrial Toxicology, pp. 1115–1122. Wiley (2015). https://doi.org/10.1002/9781118834015.ch104

    Chapter  Google Scholar 

  54. Rikhotso, O., Morodi, T.J., Masekameni, D.M.: Occupational health hazards: employer, employee, and labour union concerns. Int. J. Environ. Res. Public. Health 18(10), 5423 (2021). https://doi.org/10.3390/ijerph18105423

    Article  Google Scholar 

  55. Sayler, S.K., Roberts, B.J., Manning, M.A., Sun, K., Neitzel, R.L.: Patterns and trends in OSHA occupational noise exposure measurements from 1979 to 2013. Occup. Environ. Med. 76(2), 118–124 (2019). https://doi.org/10.1136/oemed-2018-105041

    Article  Google Scholar 

  56. Das, P.P., Chakraborty, S.: Application of simultaneous evaluation of criteria and alternatives (SECA) method for parametric optimization of hybrid machining processes. Int. J. Interact. Des. Manuf. 16(4), 1497–1509 (2022). https://doi.org/10.1007/s12008-022-00842-z

    Article  Google Scholar 

  57. Muqeem, M., Sherwani, A.F., Ahmad, M., Khan, Z.A.: Taguchi based grey relational analysis for multi response optimisation of diesel engine performance and emission parameters. Int. J. Heavy Veh. Syst. 27(4), 441–460 (2020). https://doi.org/10.1504/IJHVS.2020.109287

    Article  Google Scholar 

  58. Bose, G.K., Jana, T.K., Mitra, S.: Identification of the significant process parameters by Taguchi methodology during electrochemical grinding of Al2O3/Al—interpenetrating phase composite. Int. J. Comput. Mater. Sci. Surf. Eng. 4(3), 232–246 (2011). https://doi.org/10.1504/IJCMSSE.2011.042821

    Article  Google Scholar 

  59. Goswami, S.S., Mohanty, S.K., Behera, D.K.: Selection of a green renewable energy source in India with the help of MEREC integrated PIV MCDM tool. Mater. Today Proc. 52, 1153–1160 (2022)

    Article  Google Scholar 

  60. Khan, N.Z., Ansari, T.S.A., Siddiquee, A.N., Khan, Z.A.: Selection of E-learning websites using a novel Proximity Indexed Value (PIV) MCDM method. J. Comput. Educ. 6(2), 241–256 (2019)

    Article  Google Scholar 

  61. Rajesh, M., Rajkumar, K., Annamalai, V.E.: Abrasive water jet machining on Ti metal-interleaved basalt-flax fiber laminate. Mater. Manuf. Process. 36(3), 329–340 (2021). https://doi.org/10.1080/10426914.2020.1832692

    Article  Google Scholar 

  62. Mia, M., et al.: Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition. Measurement 122, 380–391 (2018). https://doi.org/10.1016/j.measurement.2018.02.016

    Article  Google Scholar 

  63. O’zel, T., Hsu, T.-K., Zeren, E.: Effects of cutting-edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int. J. Adv. Manuf. Technol. 25(3–4), 262–269 (2005). https://doi.org/10.1007/s00170-003-1878-5

    Article  Google Scholar 

  64. Asiltürk, İ, Çunkaş, M.: Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Syst. Appl. 38(5), 5826–5832 (2011). https://doi.org/10.1016/j.eswa.2010.11.041

    Article  Google Scholar 

  65. Wang, X., Feng, C.X.: Development of empirical models for surface roughness prediction in finish turning. Int. J. Adv. Manuf. Technol. 20(5), 348–356 (2002). https://doi.org/10.1007/s001700200162

    Article  Google Scholar 

  66. Guleria, V., Kumar, V., Singh, P.K.: Classification of surface roughness during turning of forged EN8 steel using vibration signal processing and support vector machine. Eng. Res. Express 4(1), 015029 (2022). https://doi.org/10.1088/2631-8695/ac57fa

    Article  Google Scholar 

  67. Tzotzis, A., Tapoglou, N., Verma, R.K., Kyratsis, P.: 3D-FEM approach of AISI-52100 hard turning: modelling of cutting forces and cutting condition optimization. Machines 10(2), 74 (2022). https://doi.org/10.3390/machines10020074

    Article  Google Scholar 

  68. Melkote, S.N., et al.: Advances in material and friction data for modelling of metal machining. CIRP Ann. 66(2), 731–754 (2017). https://doi.org/10.1016/j.cirp.2017.05.002

    Article  Google Scholar 

  69. Dixit, U.S., Joshi, S.N., Davim, J.P.: Incorporation of material behavior in modeling of metal forming and machining processes: a review. Mater. Des. 32(7), 3655–3670 (2011). https://doi.org/10.1016/j.matdes.2011.03.049

    Article  Google Scholar 

  70. Nourizadeh, R., Rezaei, S.M., Zareinejad, M., Adibi, H.: Comprehensive investigation on sound generation mechanisms during machining for monitoring purpose. Int. J. Adv. Manuf. Technol. 121(3–4), 1589–1610 (2022). https://doi.org/10.1007/s00170-022-09333-7

    Article  Google Scholar 

  71. Lauro, C.H., Brandão, L.C., Baldo, D., Reis, R.A., Davim, J.P.: Monitoring and processing signal applied in machining processes—a review. Measurement 58, 73–86 (2014). https://doi.org/10.1016/j.measurement.2014.08.035

    Article  Google Scholar 

  72. Yahya, S.M., Asjad, M., Khan, Z.A.: Multi-response optimization of TiO2/EG-water nano-coolant using entropy based preference indexed value (PIV) method. Mater. Res. Express 6(8), 0850a1 (2019). https://doi.org/10.1088/2053-1591/ab23bb

    Article  Google Scholar 

  73. Asjad, M., Talib, F.: Selection of optimal machining parameters using integrated MCDM approaches. Int. J. Adv. Oper. Manag. 10(2), 109 (2018). https://doi.org/10.1504/IJAOM.2018.093270

    Article  Google Scholar 

  74. Ishrat, S.I., Khan, Z.A., Siddiquee, A.N., Badruddin, I.A., Algahtani, A., Javaid, S., Gupta, R.: Optimising parameters for expanded polystyrene based pod production using Taguchi method. Mathematics 7(9), 847 (2019). https://doi.org/10.3390/math7090847

    Article  Google Scholar 

  75. Vukelic, D., Simunovic, K., Kanovic, Z., Saric, T., Tadic, B., Simunovic, G.: Multi-objective optimization of steel AISI 1040 dry turning using genetic algorithm. Neural Comput. Appl. 33(19), 12445–12475 (2021). https://doi.org/10.1007/s00521-021-05877-z

    Article  Google Scholar 

  76. Varshney, A., Khan, A.H., Yasin, M.Y., Khan, Z.A., Asjad, M.: On the optimal dynamic design of laminated composite folded plates: a multi-criteria decision analysis. Multidiscip. Model. Mater. Struct. 16(2), 322–339 (2020)

    Article  Google Scholar 

  77. Vats, P., Singh, T., Dubey, V., Sharma, A.: Optimization of machining parameters in turning of AISI 1040 steel using hybrid MCDM technique. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.09.188

    Article  Google Scholar 

  78. Nair, S.S., Ramkumar, T., Selva Kumar, M., Netto, F.: Experimental investigation of dry turning of AISI 1040 steel with TiN coated insert. Eng. Res. Express 1(2), 025038 (2019). https://doi.org/10.1088/2631-8695/ab58d9

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Department of Mechanical Engineering, Aligarh Muslim University for allowing to carry out the experimentation. The authors also pay gratitude to the Editor in Chief and reviewers for improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MBNS; methodology, MA, ZAK; formal analyses: ZAK and MA writing—original draft, MBNS and MA; supervision MA and ZAK review and editing, ZAK and MA. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mohammad Asjad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, M.B.N., Ali, M., Khan, Z.A. et al. An MCDM approach for multi-response optimisation of machining parameters in turning of EN8 steel (AISI-1040) for sustainable manufacturing. Int J Interact Des Manuf 17, 3159–3176 (2023). https://doi.org/10.1007/s12008-023-01368-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01368-8

Keywords

Navigation