Skip to main content
Log in

Abstract

This current effort proposes implementing virtual manufacturing in a shop for the automotive industry, specifically for the assembly of VLO (Vehicle Layout) operation, axle drop, engine drop, exhaust system drop/ATS system, and cab drop. The primary objective is to synchronize the material handling system’s frequency (Takt Time) with that of the Electric powered Monorail Hoist System. Different production rates can be achieved by adjusting the combination of process parameters and keeping the process flow among the material handling machinery uninterrupted. An assembly line for chassis was simulated by using varying volume levels. The effectiveness of the system was evaluated with simulated data. Delmia Quest software facilitates in finding problems in process planning by using 3D simulation in place of time-consuming manual processes. The utilization of 3D simulation during process flow design helps to verify equipment motion and spot crashing and smuggling on the assembly line. The manufacturing process was modelled in CATIA® for design, and then simulated in real time using Delmia QUEST for simulation. The proposed effort seeks to improve understanding of production on assembly lines and the many manufacturing methods and steps required during the manufacturing process in order to reduce costs of production and idling while simultaneously increasing productivity. Operator loading accelerated by 5% because of the added 14.18 min of job content, and the target number of vehicles per shift has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mor, R., Bhardwaj, A., Singh, S., Sachdeva, A.: Productivity gains through standardization-of-work in a manufacturing company. J. Manuf. Technol. Manag. 30, 899–919 (2019)

    Article  Google Scholar 

  2. Cuatrecasas, L., Fortuny-Santos, J., Vintro, C.: The operations-time chart: a graphical tool to evaluate the performance of production systems—from batch-and-queue to lean manufacturing. Comput. Ind. Eng. 61, 663–675 (2011)

    Google Scholar 

  3. Hareable, S., Ptimal, O., Epetitive, R., Cheduling, S., Odel, M.: 8, 270–280 (2001)

  4. Volpato, G.: New perspectives on automation. in In: Automation in Automotive Industries, pp. 11–30. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Colim, A., Faria, C., Braga, A.C., Sousa, N., Rocha, L., Carneiro, P., Costa, N., Arezes, P.: Towards an ergonomic assessment framework for industrial assembly workstations—A case study. Appl. Sci. 10, 3048 (2020)

    Article  Google Scholar 

  6. Boysen, N., Fliedner, M., Scholl, A.: Assembly line balancing: Which model to use when? Int. J. Prod. Econ. 111, 509–528 (2008)

    Article  MATH  Google Scholar 

  7. Voell, C., Chatterjee, P., Rauch, A.: Product Lifecycle Management to Support Industry 4.0. Springer International Publishing, Cham (2018)

    Google Scholar 

  8. Seppälä, P., Klemola, S.: How do employees perceive their organization and job when companies adopt principles of lean production? Hum. Factors Ergon. Manuf. 14, 157–180 (2004)

    Article  Google Scholar 

  9. Salleh, N.A.M., Kasolang, S., Mustakim, M.A., Kuzaiman, N.A.: The study on optimization of streamlined process flow based on delmia quest simulation in an automotive production system. Procedia Computer Science 105, 191–196 (2017)

    Article  Google Scholar 

  10. Roberts, S.D., Villa, C.D.: On a multiproduct assembly line balancing problem. AIIE Trans. 2, 361–364 (1970)

    Article  Google Scholar 

  11. Sims, T., da Wan, H.H.: -D.H. Constraint identification techniques for lean manufacturing systems. Robot Comput. Integr. Manuf. 43, 50–58 (2017)

    Article  Google Scholar 

  12. Botti, L., Mora, C., Regattieri, A.: Integrating ergonomics and lean manufacturing principles in a hybrid assembly line. Comput. Ind. Eng. 111, 481–491 (2017)

    Article  Google Scholar 

  13. Yuan, M., Yu, H., Huang, J., Ji, A.: Reconfigurable assembly line balancing for cloud manufacturing. J. Intell. Manuf. 30(6), 2391–2405 (2019)

    Article  Google Scholar 

  14. Dimitriadis, S.G.: Assembly line balancing and group working: a heuristic procedure for workers’ groups operating on the same product and workstation. Comput. Oper. Res. 33(9), 2757–2774 (2006)

    Article  MATH  Google Scholar 

  15. Yang, S.L., Xu, Z.G., Wang, J.Y.: Modelling and production configuration optimization for an assembly shop. Int. J. Simul. Model. 18(2), 366–377 (2019)

    Article  Google Scholar 

  16. Roth, N., Deuse, J., Biedermann, H.: A framework for System Excellence assessment of production systems, based on lean thinking, business excellence, and factory physics. Int. J. Prod. Res. 58, 1074–1091 (2020)

    Article  Google Scholar 

  17. Eryuruk, S.H., Kaloglu, F., Baskak, M.: Assembly line balancing in a clothing company. Fibres Text. East. Eur. 16, 93–98 (2008)

    Google Scholar 

  18. Shah, M.N., Dixit, S., Kumar, R., Jain, R., Anand, K.: Causes of delays in slum reconstruction projects in India. Int. J. Constr. Manag. 21(5), 452–467 (2021). https://doi.org/10.1080/15623599.2018.1560546

    Article  Google Scholar 

  19. Dixit, S., Stefańska, A., Musiuk, A.: Architectural form finding in arboreal supporting structure optimisation. Ain Shams Eng. J. 12(2), 2321–2329 (2021). https://doi.org/10.1016/j.asej.2020.08.022

    Article  Google Scholar 

  20. Dixit, S., Stefańska, A., Musiuk, A., Singh, P.: Study of enabling factors affecting the adoption of ICT in the indian built environment sector. Ain Shams Eng. J. 12(2), 2313–2319 (2021). https://doi.org/10.1016/j.asej.2020.09.020

    Article  Google Scholar 

  21. Dixit, S., Stefańska, A., Singh, P.: Manufacturing technology in terms of digital fabrication of contemporary biomimetic structures. Int. J. Constr. Manage. (2021). https://doi.org/10.1080/15623599.2021.2015105

    Article  Google Scholar 

  22. Mishra, L., Dixit, S., Nangia, R., Saurabh, K., Kumar, K., Sharma, K.: A brief review on segregation of solid wastes in indian region. Mater. Today Proc. 69, 419–424 (2022). https://doi.org/10.1016/j.matpr.2022.09.070

    Article  Google Scholar 

  23. Dixit, S., et al.: Replacing E-waste with coarse aggregate in architectural engineering and construction industry. Mater. Today Proc. 2353–2358 (2022). https://doi.org/10.1016/j.matpr.2021.12.154

  24. Arora, R., et al.: Potential utilization of waste materials for the production of green concrete: a review. Mater. Today Proc. 69, 317–322 (2022). https://doi.org/10.1016/j.matpr.2022.08.542

    Article  Google Scholar 

  25. Arora, R., Kumar, K., Dixit, S., Mishra, L.: Analyze the outcome of waste material as cement replacement agent in basic concrete. Mater. Today Proc. 56, 1877–1881 (2022). https://doi.org/10.1016/j.matpr.2021.11.148

    Article  Google Scholar 

  26. Kumar, K., et al.: Comparative analysis of waste materials for their potential utilization in green concrete applications. Materials 15(12), 4180 (2022)

    Article  MathSciNet  Google Scholar 

  27. Dixit, S., Singh, P.: Investigating the disposal of E-waste as in architectural engineering and construction industry. Mater. Today Proc. 56, 1891–1895 (2022). https://doi.org/10.1016/j.matpr.2021.11.163

    Article  Google Scholar 

  28. Rane, A.B., Sunnapwar, V.K., Chari, N.R., Sharma, M.R., Jorapur, V.S.: Improving performance of lock assembly line using lean and simulation approach. Int. J. Bus. Perform. Manag. 18(1), 101–124 (2017)

    Article  Google Scholar 

  29. Bukchin, J., Darel, E., Rubinovitz, J.: Team-oriented assembly systems design: a new approach. Int. J. Prod. Econ. 51, 47–57 (1997)

    Article  Google Scholar 

  30. Pastor, R., Andres, C., Duran, A., Perez, M.: Tabu search algorithms for an industrial multi-product and multi-objective assembly line balancing problem with reduction of the task dispersion. J. Oper. Res. Soc. 53, 1317–1323 (2002)

    Article  MATH  Google Scholar 

  31. Zhou, W., Li, S.Q., Huang, Y.Q., Wang, J.F.: Simulation based capacity optimization of a general assembly line with extremely unbalanced station process time. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1245–1249. (2019)

  32. Shellshear, E., Berlin, R., Carlson, J.S.: Maximizing smart factory systems by incrementally updating point clouds. IEEE Comput. Graph. Appl. 35(2), 62–69 (2015)

    Article  Google Scholar 

  33. Cannas, V.G., Pero, M., Pozzi, R., Rossi, T.: Complexity reduction and kaizen events to balance manual assembly lines: an application in the field. Int. J. Prod. Res. 56, 3914–3931 (2018)

    Article  Google Scholar 

  34. Lu, H., Liu, X., Pang, W., Ye, W.H., Wei, B.S.: Modeling and simulation of aircraft assembly line based on Quest. Adv. Mater. Res. 569, 666–669 (2012)

    Article  Google Scholar 

  35. Qu, S., Jiang, Z.: Amemetic algorithm approach for batch-model assembly line balancing problem of sub-block in shipbuilding. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 228, 1290–1304 (2014)

    Article  Google Scholar 

  36. Tao, R., Ren, H., Peng, X.: Modeling, Design and Simulation of Systems, vol. 751. Springer Singapore, Singapore (2017)

    Google Scholar 

  37. Coleman, J.B., Vaghefi, R.A., Heijunka: A key to the Toyota production system. Prod. Invent. Manag. J. 35, 31–35 (1994)

    Google Scholar 

  38. Kumar, P., Prasad, S.B., Patel, D., Gupta, L., Nag, M.B., Chadha, P.: Production improvement on the assembly line through cycle time optimization. Int. J. Interact. Des. Manuf. (IJIDeM). (2022). https://doi.org/10.1007/s12008-022-01031-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Prasad, S.B., Patel, D. et al. Optimization of cycle time assembly line for mass manufacturing. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01343-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01343-3

Keywords

Navigation