Skip to main content

Advertisement

Log in

Modeling and multi-objective optimization of cutting parameters using response surface method for milling of medium carbon steel (EN8)

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Continuous growth of the manufacturing sector is resulting in to higher energy demand due to which the manufacturing costs and greenhouse gas emissions are also increasing. Beside reduction in energy consumption; improvement in energy efficiency, power factor and reduction in cutting temperatures are also vital to ensure better sustainability of the machining sector. This work evaluates the trade-offs between energy, heat generation and cutting quality during milling of medium carbon steel (EN8) alloy steel. The effects of input process parameters viz. spindle speed, feed rate, axial depth of cut, radial depth of cut and tool helix angle has been studied on the energy consumption, energy efficiency, power factor, cutting temperatures, surface roughness response parameters. The inclusion of helix angle as an input factor and, using energy efficiency and power factor as output parameters are the major highlights of this work. The machining experiments were conducted using response surface methodology for design of experiments. The multi objective optimization was carried out by using desirability approach, for three different groups of response variables considering the different importance of energy consumption, cutting temperatures and surface roughness, under different manufacturing circumstances. The predictability of the multiple regression approach was found to be more than 90% for all the responses which highlights model significance. The direct and interaction effect were studied and discussed in details for all the responses. The values of the composite desirability achieved in all the three types of optimization problems were on higher side (0.813, 1 and 0.794). The results of the optimization were confirmed by conducting the experiments the optimized settings. The percentage error between experimental and RSM predicted result was found to be within acceptable limits. This study can be helpful for reducing the energy consumption and cutting temperature without compromising on surface roughness, in the machining of medium carbon steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CE:

Cutting energy

CCD:

Central composite design

CCRD:

Central composite rotatable design

DoE:

Design of experiment

EE:

Energy efficiency

F:

Feed rate

GA:

Genetic algorithm

H:

Helix angle

MRR:

Material removal rate

N:

Spindle speed

NSGA-II:

Non-dominated sorting genetic algorithm-II

PF:

Power factor

PCM:

Power consumed for actual cutting of material (in Watt)

PCA:

Power consumed by the machine during air cutting (no workpiece)

PC:

Power consumed for cutting

Ra:

Surface roughness

SEC:

Specific energy consumption

SA:

Simulated annealing

TECM:

Total energy consumption during machining

T:

Workpiece surface temperature rise

Y:

Radial depth of cut

Z:

Axial depth of cut

References

  1. Moradnazhad, M., Unver, H.O.: Energy efficiency of machining operations: a review Energy efficiency of machining operations: a review. Proc. IMechE Part B J. Eng. Manuf. 231, 1871–1889 (2016). https://doi.org/10.1177/0954405415619345

    Article  Google Scholar 

  2. Hayajneh, M.T., Tahat, M.S., Bluhm, J.: A study of the effects of machining parameters on the surface roughness in the end-milling process. Jordan J. Mech. Indust. Eng. 1(1), 1–5 (2007)

    Google Scholar 

  3. Newman, S.T., Nassehi, A., Dhokia, V.: Energy efficient process planning for CNC machining. CIRP J. Manuf. Sci. Technol. 5(2), 127–136 (2012). https://doi.org/10.1016/j.cirpj.2012.03.007

    Article  Google Scholar 

  4. Bilga, P.S., Singh, S., Kumar, R.: Optimization of energy consumption response parameters for turning operation using Taguchi method. J. Clean. Prod. 137, 1406–1417 (2016). https://doi.org/10.1016/j.jclepro.2016.07.220

    Article  Google Scholar 

  5. Kuram, E., Ozcelik, B., Bayramoglu, M., Demirbas, E., Tolga, B.: Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. J. Clean. Prod. 42, 159–166 (2013). https://doi.org/10.1016/j.jclepro.2012.11.003

    Article  Google Scholar 

  6. Campatelli, G., Lorenzini, L., Scippa, A.: Optimization of process parameters using a Response Surface Method for minimizing power consumption in the milling of carbon steel. J. Clean. Prod. 66, 309–316 (2014). https://doi.org/10.1016/j.jclepro.2013.10.025

    Article  Google Scholar 

  7. Yan, J., Li, L.: Multi-objective optimization of milling parameters – the trade-offs between energy, production rate and cutting quality. J. Clean. Prod. 52, 462–471 (2013). https://doi.org/10.1016/j.jclepro.2013.02.030

    Article  Google Scholar 

  8. Zhang, C., Li, W., Jiang, P., Gu, P.: Experimental investigation and multi-objective optimization approach for low-carbon milling operation of aluminum. Proc. IMechE Part C J. Mech. Eng. Sci. (2016). https://doi.org/10.1177/0954406216640574

    Article  Google Scholar 

  9. Öztürk, B., Kara, F.: Calculation and estimation of surface roughness and energy consumption in milling of 6061 alloy. Adv. Mater. Sci. Eng. 2020, 1–12 (2020). https://doi.org/10.1155/2020/5687951

    Article  Google Scholar 

  10. Kadirgama, K., Abou-El-Hossein, K.A.: Power prediction model for milling 618 stainless steel using response surface methodology. Am. J. Appl. Sci. 2(7), 1182–1187 (2005)

    Article  Google Scholar 

  11. Kadirgama, K., Abou-El-Hossein, K.A.: Torque, power and cutting force prediction model by using response surface method and factorial design. Edit. Adv. Board e 18(1), 20–44 (2005)

    Google Scholar 

  12. Bağcı, E., Aykut, Ş: The effects of tool position, coating and cutting parameters on forces, power, MRR and wear in face milling of stellite 6. Arabian J. Sci. Eng. 39(11), 8135–8146 (2014). https://doi.org/10.1007/s13369-014-1354-6

    Article  Google Scholar 

  13. Ahmed, S.U., Arora, R.: Quality characteristics optimization in CNC end milling of A36 K02600 using Taguchi’s approach coupled with artificial neural network and genetic algorithm. Int. J. Syst. Assur. Eng. Manag. 10(4), 676–695 (2019). https://doi.org/10.1007/s13198-019-00796-8

    Article  Google Scholar 

  14. Noor, R.M., Ramli, M.I., Zubair, A.F., Hemdi, A.R., Kataraki, P.: Optimization of cutting parameters to improve power consumption and material removal rate in high efficiency milling. J. Mines Metals Fuels 69(12A), 163 (2022). https://doi.org/10.18311/jmmf/2021/30149

    Article  Google Scholar 

  15. Sahu, N.K., Andhare, A.B.: Modelling and multiobjective optimization for productivity improvement in high speed milling of Ti–6Al–4V using RSM and GA. J. Brazil. Soc. Mech. Sci. Eng. 39(12), 5069–5085 (2017). https://doi.org/10.1007/s40430-017-0804-y

    Article  Google Scholar 

  16. Malghan, R.L., Rao, K.M.C., Shettigar, A.K., Rao, S.S., D’Souza, R.J.: Application of particle swarm optimization and response surface methodology for machining parameters optimization of aluminium matrix composites in milling operation. J. Brazil. Soc. Mech. Sci. Eng. 39(9), 3541–3553 (2016). https://doi.org/10.1007/s40430-016-0675-7

    Article  Google Scholar 

  17. Helu, M., Rühl, J., Dornfeld, D., Werner, P., Lanza, G.: Evaluating trade-offs between sustainability, performance, and cost of green machining technologies. In 18th CIRP International Conference on Life Cycle Engineering, pp. 195–200. (2011). https://doi.org/10.1007/978-3-642-19692-8.

  18. Bhushan, R.K.: Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. J. Clean. Prod. 39, 242–254 (2013). https://doi.org/10.1016/j.jclepro.2012.08.008

    Article  Google Scholar 

  19. Aggarwal, A., Singh, H., Kumar, P., Singh, M.: Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—A comparative analysis. J. Mater. Process. Technol. 200(1–3), 373–384 (2008). https://doi.org/10.1016/j.jmatprotec.2007.09.041

    Article  Google Scholar 

  20. Fata, A.: Temperature measurement during machining depending on cutting conditions. G. J. P A Sci. Tech. 1(2), 16–21 (2011)

    Google Scholar 

  21. Bacci, M., Wallbank, J.: Cutting temperature: prediction and measurement methods—a review. J. Mater. Process. Tech. 88, 195–202 (1999)

    Article  Google Scholar 

  22. Bhirud, N.L., Gawande, R.R.: Measurement and prediction of cutting temperatures during dry milling: review and discussions. J. Brazil. Soc. Mech. Sci. Eng. 39(12), 5135–5158 (2017). https://doi.org/10.1007/s40430-017-0869-7

    Article  Google Scholar 

  23. Tamilarasan, A., Marimuthu, K., Renugambal, A.: Investigations and optimization for hard milling process parameters using hybrid method of RSM and NSGA-II. Rev. Téc. Ing. Univ. Zulia. 39(2012), 41–54 (2016)

    Google Scholar 

  24. Tamilarasan, A., Marimuthu, K.: Multi-response optimization of hard milling process: RSM coupled with grey relational analysis. Int. J. Eng. Technol. 5(6), 4901–4913 (2014)

    Google Scholar 

  25. Tamilarasan, A., Marimuthu, K.: Multi-response optimisation of hard milling process parameters based on integrated Box-Behnken design with desirability function approach. Int. J. Mach. Mach. Mater 15(3/4), 300 (2014). https://doi.org/10.1504/IJMMM.2014.060555

    Article  Google Scholar 

  26. M. H. F. Al Hazza, E. Y. T. Adesta, M. Y. Superianto, M. Riza, Cutting temperature and surface roughness optimization in CNC end milling using multi objective genetic algorithm. In Proceedings - 2012 International Conference on Advanced Computer Science Applications and Technologies, ACSAT 2012, pp. 275–278. (2013). https://doi.org/10.1109/ACSAT.2012.39.

  27. Le Coz, G., Marinescu, M., Devillez, A., Dudzinski, D., Velnom, L.: Measuring temperature of rotating cutting tools: application to MQL drilling and dry milling of aerospace alloys. Appl. Thermal Eng. 36, 434–441 (2012). https://doi.org/10.1016/j.applthermaleng.2011.10.060

    Article  Google Scholar 

  28. Li, A., Zhao, J., Pei, Z., Zhu, N.: Simulation-based solid carbide end mill design and geometry optimization. Int. J. Adv. Manuf. Technol. 71(9–12), 1889–1900 (2014). https://doi.org/10.1007/s00170-014-5638-5

    Article  Google Scholar 

  29. Dinc, C., Lazoglu, I., Serpenguzel, A.: Analysis of thermal fields in orthogonal machining with infrared imaging. J. Mater. Technol. 198(1–3), 147–154 (2008). https://doi.org/10.1016/j.jmatprotec.2007.07.002

    Article  Google Scholar 

  30. Vikas, V., Shyamraj, R., Varughese, A.K.: Experimental study of the influence of tool geometry by optimizing helix angle in the peripheral milling operation using Taguchi based grey relational analysis. Int. J. Adv. Eng. Manag. Sci. 2(8), 239594 (2016)

    Google Scholar 

  31. Izamshah, R., Yuhazri, M. Y., Hadzley, M., Amran, M. A.: Effects of end mill helix angle on accuracy for machining thin-rib aerospace component. vol. 315, pp. 773–777. (2013) https://doi.org/10.4028/www.scientific.net/AMM.315.773.

  32. Sivasakthivel, P.S., Murugan, V.V., Sudhakaran, R.: Prediction of tool wear from machining parameters by response surface methodology in end milling. Int. J. Eng. Sci. Technol. 2(6), 1780–1789 (2010)

    Google Scholar 

  33. Sivasakthivel, P.S., Velmurugan, V., Sudhakaran, R.: Prediction of vibration amplitude from machining parameters by response surface methodology in end milling. Int. J. Adv. Manuf. Technol. 53, 453–461 (2011)

    Article  Google Scholar 

  34. Sivasakthivel, P.S., Vel Murugan, V., Sudhakaran, R.: Experimental evaluation of surface roughness for end milling of Al 6063: response surface and neural network model. Int. J. Manuf. Res. 7(1), 9–25 (2012)

    Article  Google Scholar 

  35. Sivasakthivel, P.S., Vel Murugan, V., Sudhakaran, R.: Cutting force prediction depending on process parameters by response surface methodology in milling. Int. J. Mach. Mach. Mater. 11(2), 137–153 (2012)

    Google Scholar 

  36. Hricova, J., Kovac, M., Sugar, P.: Experimental investigation of high speed milling of aluminium alloy. Tehnički Vjesnik 21(4), 773–777 (2014)

    Google Scholar 

  37. Tsao, C.C.: Grey-Taguchi method to optimize the milling parameters of aluminum alloy. Int. J. Adv. Manuf. Technol. 40(1–2), 41–48 (2009). https://doi.org/10.1007/s00170-007-1314-3

    Article  Google Scholar 

  38. Kalidass, S., Palanisamy, P., Muthukumaran, V.: Prediction and optimisation of tool wear for end milling operation using artificial neural networks and simulated annealing algorithm. Int. J. Mach. Mach. Mater. 14(2), 142 (2013). https://doi.org/10.1504/IJMMM.2013.055734

    Article  Google Scholar 

  39. Kalidass, S., Palanisamy, P.: Prediction of surface roughness for AISI 304 steel with solid carbide tools in end milling process using regression and ANN models. Arab. J. Sci. Eng. 39(11), 8065–8075 (2014). https://doi.org/10.1007/s13369-014-1346-6

    Article  Google Scholar 

  40. Sivaraos, K.R., Milkey, A.R., Samsudin, A.K.: Comparison between Taguchi method and response surface. Jordan J. Mech. Ind. Eng. 8(1), 35–42 (2014)

    Google Scholar 

  41. Kilickap, E., Huseyinoglu, M., Yardimeden, A.: Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm. Int. J. Adv. Manuf. Technol. 52(1–4), 79–88 (2011). https://doi.org/10.1007/s00170-010-2710-7

    Article  Google Scholar 

  42. Santhanakrishnan, M., Sivasakthivel, P.S., Sudhakaran, R.: Modeling of geometrical and machining parameters on temperature rise while machining Al 6351 using response surface methodology and genetic algorithm. J. Brazil. Soc. Mech. Sci. Eng. 39(2), 487–496 (2015). https://doi.org/10.1007/s40430-015-0378-5

    Article  Google Scholar 

  43. Patel, K., Batish, A., Bhattacharya, A.: Optimization of surface roughness in an end-milling operation using nested experimental design. Prod. Eng. 3(4–5), 361–373 (2009). https://doi.org/10.1007/s11740-009-0177-x

    Article  Google Scholar 

  44. Sivasakthivel, P.S., Sudhakaran, R.: Optimization of machining parameters on temperature rise in end milling of Al 6063 using response surface methodology and genetic algorithm. Int. J. Adv. Manuf. Technol. 67(9–12), 2313–2323 (2013). https://doi.org/10.1007/s00170-012-4652-8

    Article  Google Scholar 

  45. Routara, B.C., Bandyopadhyay, A., Sahoo, P.: Roughness modeling and optimization in CNC end milling using response surface method: effect of workpiece material variation. Int. J. Adv. Manuf. Technol. 40(11–12), 1166–1180 (2009). https://doi.org/10.1007/s00170-008-1440-6

    Article  Google Scholar 

  46. Camposeco-Negrete, C.: Optimization of cutting parameters using response surface method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. J. Clean. Prod. 91, 109–117 (2015). https://doi.org/10.1016/j.jclepro.2014.12.017

    Article  Google Scholar 

  47. Balogun, V.A., Mativenga, P.T.: Specific energy based characterization of surface integrity in mechanical machining. Proced. Manuf. 7, 290–296 (2017). https://doi.org/10.1016/j.promfg.2016.12.072

    Article  Google Scholar 

  48. Calvanese, M.L., Albertelli, P., Matta, A., Taisch, M., Milano, P.: Analysis of energy consumption in CNC machining centers and determination of optimal cutting conditions. (2013).

  49. Camposeco-Negrete, C.: Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. J. Clean. Prod. 53, 195–203 (2013). https://doi.org/10.1016/j.jclepro.2013.03.049+

    Article  Google Scholar 

  50. Yusoff, A.R., Arsyad, F.: Evaluation of surface roughness and power consumption in machining FCD 450 cast iron using coated and uncoated irregular milling tools. IOP Conf. Ser. Mater. Sci. Eng. 114, 012017 (2016). https://doi.org/10.1088/1757-899X/114/1/012017

    Article  Google Scholar 

  51. Altıntaş, R.S., Kahya, M., Ünver, H.Ö.: Modelling and optimization of energy consumption for feature based milling. Int. J. Adv. Manuf. Technol. 86(9–12), 3345–3363 (2016). https://doi.org/10.1007/s00170-016-8441-7

    Article  Google Scholar 

  52. Kumar, R., Bilga, P.S., Singh, S.: Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation. J. Clean. Prod. 164, 45–57 (2017). https://doi.org/10.1016/j.jclepro.2017.06.077

    Article  Google Scholar 

  53. Iqbal, M., Konneh, M., Bin, M.H., Abdallah, K.A., Bin Binting, M.F.: Cutting temperature in high speed milling of silicon carbide using diamond coated tool. Int. J. Mech. Prod. Eng. 3(4), 62–66 (2015)

    Google Scholar 

  54. Kus, A., Yahya Isik, M., Cakir, S.C., Özdemir, K.: Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting. Sensors 15(1), 1274–1291 (2015). https://doi.org/10.3390/s150101274

    Article  Google Scholar 

  55. Gosai, M., Bhavsar, S.N.: Experimental study on temperature measurement in turning operation of hardened steel (EN36). Proced. Technol. 23, 311–318 (2016). https://doi.org/10.1016/j.protcy.2016.03.032

    Article  Google Scholar 

  56. Patel, C.H., Patel, C.P.: Parametric optimization of end milling of AISI 1018 mild steel by various lubricants with solid carbide end mills. Int. J. Eng. Res. Appl. 3, 728–732 (2013)

    Google Scholar 

  57. Patel, B., Nayak, H., Araniya, K., Champaneri, G.: Parametric optimization of temperature during CNC end milling of mild steel using RSM. Int. J. Eng. Res. Technol. 3(1), 69–73 (2014)

    Google Scholar 

  58. Bhardwaj, B., Kumar, R., Singh, P.K.: An improved surface roughness prediction model using Box-Cox transformation with RSM in end milling of EN 353. J. Mech. Sci. Technol. 28, 5149–5157 (2014). https://doi.org/10.1007/s12206-014-0837-4

    Article  Google Scholar 

  59. Reddy, N.S.K., Rao, P.V.: A genetic algorithmic approach for optimization of surface roughness prediction model in dry milling. Mach. Sci. Technol. 9(1), 63–84 (2005). https://doi.org/10.1081/MST-200051263

    Article  Google Scholar 

  60. Singh, C., Bhogal, S.S., Pabla, D.B., Kumar, P.: Empirical modeling of surface roughness and metal removal rate in CNC milling operation. Int. J. Innov. Technol. Res. (JITR) 2, 1120–1126 (2014)

    Google Scholar 

  61. Derringer, G., Suich, R.: Simultaneous optimization of several response variables. J. Qual. Technol. 12(4), 214–219 (1980)

    Article  Google Scholar 

  62. Jenarthanan, M.P., Jeyapaul, R.: Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using Taguchi method. Int. J. Eng. Sci. Technol. 5(4), 23–36 (2013)

    Google Scholar 

  63. Pattanaik, L.N.: Analytical Tools in Research, 1st edn. Educreation Publishing, Delhi (2017)

    Google Scholar 

  64. Kamguem, R., Djebara, A., Songmene, V.: Investigation on surface finish and metallic particle emission during machining of aluminum alloys using response surface methodology and desirability functions. Int. J. Adv. Manuf. Technol. 69(5–8), 1283–1298 (2013). https://doi.org/10.1007/s00170-013-5105-8

    Article  Google Scholar 

  65. Montgomery, D.C.: Design and Analysis of Experiments. Willey, New York (2009)

    Google Scholar 

  66. Kivak, T.: Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement (London) 50(1), 19–28 (2014). https://doi.org/10.1016/j.measurement.2013.12.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Bhirud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhirud, N.L., Dube, A.S., Patil, A.S. et al. Modeling and multi-objective optimization of cutting parameters using response surface method for milling of medium carbon steel (EN8). Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01267-y

Keywords

Navigation