Skip to main content
Log in

Resistance welding analysis of thermoplastic composite structures in aeronautical applications

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The paper investigates and provides an extensive overview of resistance welding in the aerospace industry for joining composite structures. The use of thermoplastic composites is increasing in the aerospace industry and has become a crucial material. Thermoplastics have many advantages over thermoset composites, the most important being their ability to undergo fusion bonding. Welding of thermoplastic composites provides a very advantageous alternative to mechanical fasteners and adhesive joints. Resistance welding of thermoplastics provides an advantage over other welding methods due to its fast and precise process. The ability to control multiple parameters of the welding process optimises the welding process at a very high level. For example, parameters like welding current, clamping pressure, and time of heat application have huge impacts on the weld. The heating element used for the process can also be modified to get desired results when the welding’s size, shape, and material are changed. For example, resistance welding can be done for various weld geometries like a lap joint, a double lap joint, and a skin or stringer joint, which is important in aircraft structures. Thermosets can also be fusion-bonded with the help of thermoplastic, and two techniques, co-curing and hybrid composites, are studied. To gain a better understanding of the welding process, finite element analysis modelling for numerical analysis and resistance welding method optimization is carried out.Defects in the resistance welding process, like void formation and current leakage, are discussed. Non-uniform heat distribution leads to multiple failures. Overheating and underheating also lead to diminishing weld quality. Heating element failure is also a significant cause of weld failure. For weld strengthening, surface treatments and additives like carbon nanotubes and graphene oxides are used. Further research for detailed analysis in different aspects, like fatigue analysis of the weld joint for critical aircraft structures, is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart, R.: Thermoplastic composites - recyclable and fast to process. Reinf. Plast. 55, 22–28 (2011). https://doi.org/10.1016/S0034-3617(11)70073-X

    Article  Google Scholar 

  2. Offringa, A.R.: Thermoplastic composites - Rapid processing applications. Compos. Part A: Appl. Sci. Manufac. 27, 329–336 (1996). https://doi.org/10.1016/1359-835X(95)00048-7

    Article  Google Scholar 

  3. Vaidya, U.K., Chawla, K.K.: Processing of fibre reinforced thermoplastic composites. Int. Mater. Rev. (2008). https://doi.org/10.1179/174328008X325223

    Article  Google Scholar 

  4. Awais, H., Nawab, Y., ZainolAbidin, M.S.: Environmental benign natural fibre reinforced thermoplastic composites: a review. Compos. Part C: Open Access. 4, 100082 (2021). https://doi.org/10.1016/j.jcomc.2020.100082

    Article  Google Scholar 

  5. Stegelmann, M., Krahl, M., Hufenbach: W., Integration of textile reinforcements in the injection-moulding process for manufacturing and joining thermoplastic support-frames, in: ICCM International Conferences on Composite Materials. International Committee on Composite Materials. (2015)

  6. Dobrzański, P.: Bonding of High Temperature Thermoplastic Carbon Composites with Resistance Welding Technique. Transactions on Aerospace Research 2018, 1–13. (2018). https://doi.org/10.2478/tar-2018-0018

  7. Stavrov, D., Bersee, H.E.N.: Resistance welding of thermoplastic composites-an overview. Compos. Part A: Appl. Sci. Manufac. 36, 39–54 (2005). https://doi.org/10.1016/S1359-835X(04)00182-4

    Article  Google Scholar 

  8. Ageorges, C., Ye, L., Hou, M.: Advances in fusion bonding techniques for joining thermoplastic matrix composites: a review. Compos. - Part A: Appl. Sci. Manuf. 32, 839–857 (2001). https://doi.org/10.1016/S1359-835X(00)00166-4

    Article  Google Scholar 

  9. Ageorges, C., Ye, L., Hou, M.: Experimental investigation of the resistance welding of thermoplastic-matrix composites. Part II: optimum processing window and mechanical performance. Compos. Sci. Technol. 60, 1191–1202 (2000). https://doi.org/10.1016/s0266-3538(00)00025-7

    Article  Google Scholar 

  10. Tanaka, K., Okada, K., Katayama, T.: Influence of holding time and pressure on tensile shear strength of resistance welded CFRTP. In: High Performance and Optimum Design of Structures and Materials II, pp. 351–359. WIT Press (2016). https://doi.org/10.2495/hpsm160331

  11. Warren, K.C., Lopez-Anido, R.A., … Dagher, H.J., 2016. Resistance welding of glass fiber reinforced PET: Effect of weld pressure and heating element geometry. Journal of Reinforced Plastics and Composites 35, 974–985. https://doi.org/10.1177/0731684416633516

  12. de Souza, S.D.B.: Experimental investigation of Processing Welding Parameters for PPS/Carbon Fiber Laminates for Aeronautical Applications. Adv. Mater. Res. 1135, 62–74 (2016). https://doi.org/10.4028/www.scientific.net/amr.1135.62

    Article  Google Scholar 

  13. Stavrov, D., Bersee, H.E.N.: Thermal aspects in resistance welding of thermoplastic composites, in: Proceedings of the ASME Summer Heat Transfer Conference. American Society of Mechanical Engineers, pp. 151–156. (2003). https://doi.org/10.1115/ht2003-47222

  14. Rohart, V., Lebel, L.L., Dubé, M.: Effects of environmental conditions on the lap shear strength of resistance-welded carbon fibre/thermoplastic composite joints. Compos. Part B: Eng. 198. (2020). https://doi.org/10.1016/j.compositesb.2020.108239

    Article  Google Scholar 

  15. Xiong, X., Zhao, Pu, … Ji, S., 2020. Enhanced resistance-welding hybrid joints of titanium alloy/thermoplastic composites using a carbon-nanotube lamina. Diamond and Related Materials 101. https://doi.org/10.1016/j.diamond.2019.107611

  16. Zhao, P.: Resistance welded thermoplastic composites joint strengthened via carbon nanotubes from flame: interface strength, mechanical properties and microstructure. Mater. Res. Express. 6 (2019). https://doi.org/10.1088/2053-1591/ab3b1f

  17. Li, X., Sun, M., … Wang, K., 2021. Enhanced adhesion between PEEK and stainless-steel mesh in resistance welding of CF/PEEK composites by various surface treatments. High Performance Polymers. https://doi.org/10.1177/09540083211001115

  18. Rohart, V., Laberge Lebel, L., Dubé, M.: Improved adhesion between stainless steel heating element and PPS polymer in resistance welding of thermoplastic composites. Compos. Part B: Eng. 188 (2020). https://doi.org/10.1016/j.compositesb.2020.107876

  19. Xiong, X., Zhao, Pu, … Ji, S., 2019. Effect of chemical etching of resistance wire surface on the strength and failure mechanism of the resistance-welded joint of polyetherimide composites. Journal of Applied Polymer Science 136. https://doi.org/10.1002/app.47879

  20. Stavrov, D., Bersee, H.E.N.: Resistance welding of thermoplastic composites-an overview. Compos. Part A: Appl. Sci. Manufac. 36, 39–54 (2005). https://doi.org/10.1016/S1359-835X(04)00182-4

    Article  Google Scholar 

  21. Brauner, C., Nakouzi, S., … Tresch, J., 2020. Co-curing behaviour of thermoset composites with a thermoplastic boundary layer for welding purposes. Advanced Composites Letters. https://doi.org/10.1177/2633366X20902777

  22. Zweifel, L., Brauner, C.: Investigation of the interphase mechanisms and welding behaviour of fast-curing epoxy based composites with co-cured thermoplastic boundary layers. Compos. Part A: Appl. Sci. Manufac. 139 (2020). https://doi.org/10.1016/j.compositesa.2020.106120

  23. Zweifel, L., Brunner, J., … Dransfeld, C., 2020. Development of a resistance welding process for thermoset fiber composite components with co-cured thermoplastic boundary layer, in: ECCM 2018–18th European Conference on Composite Materials. Applied Mechanics Laboratory

  24. Deng, S., Djukic, L., … Ye, L., 2015. Thermoplastic-epoxy interactions and their potential applications in joining composite structures - A review. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2014.09.027

  25. Zweifel, L., Brauner, C.: Investigation of the interphase mechanisms and welding behaviour of fast-curing epoxy based composites with co-cured thermoplastic boundary layers. Compos. Part A: Appl. Sci. Manufac. 139 (2020). https://doi.org/10.1016/j.compositesa.2020.106120

  26. Xie, L., Liu, H., … Li, D., 2016. Fusion bonding of thermosets composite structures with thermoplastic binder co-cure and prepreg interlayer in electrical resistance welding. Materials and Design 98, 143–149. https://doi.org/10.1016/j.matdes.2016.03.020

  27. Ageorges, C., Ye, L.: Resistance welding of thermosetting composite/thermoplastic composite joints. Compos. - Part A: Appl. Sci. Manuf. 32, 1603–1612 (2001). https://doi.org/10.1016/S1359-835X(00)00183-4

    Article  Google Scholar 

  28. Cui, X., Tian, L., … Dong, J.P., 2021. Summary of thermosetting composite material welding, in: Journal of Physics: Conference Series. IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/1765/1/012021

  29. Villegas, I.F., Rubio, P.V.: High-temperature hybrid welding of thermoplastic (CF/PEEK) to thermoset (CF/epoxy) composites, in: ICCM International Conferences on Composite Materials. International Committee on Composite Materials. (2015)

  30. Fernandez Villegas, I., Vizcaino Rubio, P.: On avoiding thermal degradation during welding of high-performance thermoplastic composites to thermoset composites. Compos. Part A: Appl. Sci. Manufac. 77, 172–180 (2015). https://doi.org/10.1016/j.compositesa.2015.07.002

    Article  Google Scholar 

  31. Ageorges, C., Ye, L., Hou, M.: Experimental investigation of the resistance welding for thermoplastic-matrix composites. Part I: heating element and heat transfer. Compos. Sci. Technol. 60, 1027–1039 (2000). https://doi.org/10.1016/S0266-3538(00)00005-1

    Article  Google Scholar 

  32. Dubé, M., Hubert, P., … Denault, J., 2007. Resistance welding of thermoplastic composites skin/stringer joints. Composites Part A: Applied Science and Manufacturing 38, 2541–2552. https://doi.org/10.1016/j.compositesa.2007.07.014

  33. Dubé, M., Hubert, P., … Denault, J., 2009. Fatigue failure characterisation of resistance-welded thermoplastic composites skin/stringer joints. International Journal of Fatigue 31,719–725. https://doi.org/10.1016/j.ijfatigue.2008.03.012

  34. Dubé, M., Chazerain, A., … Bersee, H.En, 2015. Characterisation of resistance-welded thermoplastic composite double-lap joints under static and fatigue loading. Journal of Thermoplastic Composite Materials 28, 762–776. https://doi.org/10.1177/0892705713490714

  35. DU, B., CHEN, L., … LI, W., 2020. Resistance welding of glass fiber reinforced thermoplastic composite: Experimental investigation and process parameter optimisation. Chinese Journal of Aeronautics 33, 3469–3478. https://doi.org/10.1016/j.cja.2020.02.018

  36. Shi, H., Villegas, I.F., Bersee, H.E.N.: 2015. A displacement-detection based approach for process monitoring and processing window definition of resistance welding of thermoplastic composites. Composites Part A: Applied Science and Manufacturing 74, 1–9. https://doi.org/10.1016/j.compositesa.2015.03.002

  37. Avenet, J., Levy, A., … Delmas, J., 2020. Adhesion of high performance thermoplastic composites: Development of a bench and procedure for kinetics identification. Composites Part A: Applied Science and Manufacturing 138. https://doi.org/10.1016/j.compositesa.2020.106054

  38. Barbosa, L.C.M.: Fractographic evaluation of welded joints of PPS/glass fiber thermoplastic composites. Eng. Fail. Anal. 102, 60–68 (2019). https://doi.org/10.1016/j.engfailanal.2019.04.032

    Article  Google Scholar 

  39. Talbot, É., Hubert, P., … Yousefpour, A., 2013. Optimisation of thermoplastic composites resistance welding parameters based on transient heat transfer finite element modeling.Journal of Thermoplastic Composite Materials 26, 699–717. https://doi.org/10.1177/0892705711428657

  40. Colak, Z.S., Sonmez, F.O., Kalenderoglu, V.: Process modeling and optimisation of resistance welding for thermoplastic composites. J. Compos. Mater. 36, 721–744 (2002). https://doi.org/10.1177/0021998302036006507

    Article  Google Scholar 

  41. Nagel, L., Herwig, A., … Horst, P., 2021. Numerical Investigation of Residual Stresses in Welded Thermoplastic CFRP Structures. Journal of Composites Science 5, 45. https://doi.org/10.3390/jcs5020045

  42. Shi, H., Fernandez-Villegas, I., Bersee, H.E.N.: Modelling of heat transfer and consolidation for thermoplastic composites resistance welding, in: ICCM International Conferences on Composite Materials. International Committee on Composite Materials. (2011)

  43. Holmes, S.T., Gillespie, J.W.: Thermal analysis for Resistance Welding of large-scale thermoplastic composite joints. J. Reinf. Plast. Compos. 12, 723–736 (1993). https://doi.org/10.1177/073168449301200609

    Article  Google Scholar 

  44. Talbot, E., Yousefpour, A., … Hojjati, M., 2005. Thermal behavior during thermoplastic composites resistance welding, in: Annual Technical Conference - ANTEC, Conference Proceedings. pp. 221–225

  45. Shi, H., Villegas, I.F., Bersee, H.E.N.: Strength and failure modes in resistance welded thermoplastic composite joints: Effect of fibre-matrix adhesion and fibre orientation. Compos. Part A: Appl. Sci. Manufac. 55, 1–10 (2013). https://doi.org/10.1016/j.compositesa.2013.08.008

    Article  Google Scholar 

  46. de Souza, S.D.B.: Experimental investigation of Processing Welding Parameters for PPS/Carbon Fiber Laminates for Aeronautical Applications. Adv. Mater. Res. 1135, 62–74 (2016). https://doi.org/10.4028/www.scientific.net/amr.1135.62

    Article  Google Scholar 

  47. Warren, K.C., Lopez-Anido, R.A., … Dagher, H.J., 2016. Resistance welding of glass fiber reinforced PET: Effect of weld pressure and heating element geometry. Journal of Reinforced Plastics and Composites 35, 974–985. https://doi.org/10.1177/0731684416633516

  48. Ageorges, C., Ye, L., Hou, M.: Experimental investigation of the resistance welding of thermoplastic-matrix composites. Part II: optimum processing window and mechanical performance. Compos. Sci. Technol. 60, 1191–1202 (2000). https://doi.org/10.1016/s0266-3538(00)00025-7

    Article  Google Scholar 

  49. Tanaka, K., Okada, K., Katayama, T.: Influence of holding time and pressure on tensile shear strength of resistance welded CFRTP. In: High Performance and Optimum Design of Structures and Materials II, pp. 351–359. WIT Press (2016). https://doi.org/10.2495/hpsm160331

  50. Warren, K.C., Lopez-Anido, R.A., … Dagher, H.J., 2016. Resistance welding of glass fiber reinforced PET: Effect of weld pressure and heating element geometry. Journal of Reinforced Plastics and Composites 35, 974–985. https://doi.org/10.1177/0731684416633516

  51. DU, B., CHEN, L., … LI, W., 2020. Resistance welding of glass fiber reinforced thermoplastic composite: Experimental investigation and process parameter optimisation. Chinese Journal of Aeronautics 33, 3469–3478. https://doi.org/10.1016/j.cja.2020.02.018

  52. de Souza, S.D.B.: Experimental investigation of Processing Welding Parameters for PPS/Carbon Fiber Laminates for Aeronautical Applications. Adv. Mater. Res. 1135, 62–74 (2016). https://doi.org/10.4028/www.scientific.net/amr.1135.62

    Article  Google Scholar 

  53. Dubé, M., Hubert, P., … Yousefpour, A., 2008. Fatigue performance characterisation of resistance-welded thermoplastic composites. Composites Science and Technology 68,1759–1765. https://doi.org/10.1016/j.compscitech.2008.02.012

  54. Dubé, M., Hubert, P., … Denault, J., 2009. Fatigue failure characterisation of resistance-welded thermoplastic composites skin/stringer joints. International Journal of Fatigue 31,719–725. https://doi.org/10.1016/j.ijfatigue.2008.03.012

  55. Dubé, M., Chazerain, A., … Bersee, H.En, 2015. Characterisation of resistance-welded thermoplastic composite double-lap joints under static and fatigue loading. Journal of Thermoplastic Composite Materials 28, 762–776. https://doi.org/10.1177/0892705713490714

  56. Brassard, D., Dubé, M., Tavares, J.R.: Resistance welding of thermoplastic composites with a nanocomposite heating element. Compos. Part B: Eng. 165, 779–784 (2019). https://doi.org/10.1016/j.compositesb.2019.02.038

    Article  Google Scholar 

  57. Dubé, M., Hubert, P., … Yousefpour, A., 2012. Metal mesh heating element size effect in resistance welding of thermoplastic composites. Journal of Composite Materials 46, 911–919. https://doi.org/10.1177/0021998311412986

  58. Xiong, X., Wang, D., … Ji, S., 2020. Improved mechanical properties of resistance welded joints of thermoplastic composites by versatile graphene oxide. Journal of Adhesion Science and Technology. https://doi.org/10.1080/01694243.2020.1834288

  59. Shi, H., Villegas, I.F., Bersee, H.E.N.: Analysis of void formation in thermoplastic composites during resistance welding. J. Thermoplast. Compos. Mater. 30, 1654–1674 (2017). https://doi.org/10.1177/0892705716662514

    Article  Google Scholar 

  60. Stavrov, D., Bersee, H.E.N.: Thermal aspects in resistance welding of thermoplastic composites, in: Proceedings of the ASME Summer Heat Transfer Conference. American Society of Mechanical Engineers, pp. 151–156. (2003). https://doi.org/10.1115/ht2003-47222

  61. Shi, H., Villegas, I.F., Bersee, H.E.N.: Strength and failure modes in resistance welded thermoplastic composite joints: Effect of fibre-matrix adhesion and fibre orientation. Compos. Part A: Appl. Sci. Manufac. 55, 1–10 (2013). https://doi.org/10.1016/j.compositesa.2013.08.008

    Article  Google Scholar 

  62. Endraß: Manuel and Gänswürger, Philipp and Jarka, Stefan and Bauer, Simon and Fischer, Frederic and Ziche, Lorenz and Larsen, Lars-Christian and Kupke, Michael Towards increased reliability of resistance welded joints for aircraft assembly ITHEC 2020, 13.-15. Oct. 2020, Bremen, Germany. (2020)

  63. Brandt, L., Endraß: Manuel and Jarka, Stefan and Vistein, Michael and Beyrle, Matthias and Gänswürger, Philipp ROBOT-BASED IMPLANT RESISTANCE WELDING OF CARBON FIBER REINFORCED THERMOPLASTICS SAMPE Europe Conference 2017, 14.-16. Nov. 2017, Stuttgart, Germany. (2017)

  64. Shi, H., Villegas, I.F., … Yousefpour, A., 2015. Continuous resistance welding of thermoplastic composites: Modelling of heat generation and heat transfer. Composites Part A: Applied Science and Manufacturing 70, 16–26. https://doi.org/10.1016/j.compositesa.2014.12.007

  65. Barbosa, L.C.M.: Fractographic evaluation of welded joints of PPS/glass fiber thermoplastic composites. Eng. Fail. Anal. 102, 60–68 (2019). https://doi.org/10.1016/j.engfailanal.2019.04.032

    Article  Google Scholar 

  66. Dubé, M., Hubert, P., … Denault, J., 2008. Current leakage prevention in resistance welding of carbon fibre reinforced thermoplastics. Composites Science and Technology 68, 1579–1587. https://doi.org/10.1016/j.compscitech.2007.09.008

  67. Shi, H., Villegas, I.F., Bersee, H.E.N.: A study of process induced voids in resistance welding of thermoplastic composites, in: ICCM International Conferences on Composite Materials. International Committee on Composite Materials. (2015)

  68. Broughton, W.: Testing the mechanical, thermal and chemical properties of adhesives for marine environments. In: Adhesives in Marine Engineering, pp. 99–154. Elsevier Inc. (2012). https://doi.org/10.1533/9780857096159.2.99

  69. Zhao, T., Palardy, G., … Benedictus, R., 2017. Mechanical behaviour of thermoplastic composites spot-welded and mechanically fastened joints: A preliminary comparison.Composites Part B: Engineering 112, 224–234. https://doi.org/10.1016/j.compositesb.2016.12.028

  70. Zhao, T., Rans, C., … Benedictus, R., 2019. On sequential ultrasonic spot welding as an alternative to mechanical fastening in thermoplastic composite assemblies: A study on single-column multi-row single-lap shear joints. Composites Part A: Applied Science and Manufacturing 120, 1–11. https://doi.org/10.1016/j.compositesa.2019.02.013

  71. Gouin, O., Shaughnessey, P., Dubé, M., Fernandez Villegas, I.: Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes. J. Compos. Mater. 50, 2895–2910 (2016). https://doi.org/10.1177/0021998315614991

    Article  Google Scholar 

  72. Choudhury, M.R., Debnath, K.: A review of the research and advances in electromagnetic joining of fiber-reinforced thermoplastic composites. Polym. Eng. Sci. (2019). https://doi.org/10.1002/pen.25207

    Article  Google Scholar 

  73. Villegas, I.F., Moser, L., … Bersee, H.E., 2013. Process and performance evaluation of ultrasonic, induction and resistance welding of advanced thermoplastic composites.Journal of Thermoplastic Composite Materials 26, 1007–1024. https://doi.org/10.1177/0892705712456031

  74. Kalas: Vinayak &Roos, Laurens-Jan. Welding of thermoplastic composites. (2016). https://doi.org/10.13140/RG.2.1.4101.0803

  75. Arias, M., Ziegmann, G.: Impulse resistance welding: a new technique for joining advanced thermoplastic composite parts. International SAMPE Symposium and Exhibition (Proceedings) 41, 1361–1371. (1996)

  76. Ageorges, C., Ye, L.: Simulation of impulse resistance welding for thermoplastic matrix composites. Appl. Compos. Mater. 8, 133–147 (2001). https://doi.org/10.1023/A:1011229120375

    Article  Google Scholar 

  77. Howie, I., Gillespie, J.W., … Smiley, A.J., 1993. Resistance Welding of Graphite-Polyarylsulfone/Polysulfone Dual-Polymer Composites. Journal of Thermoplastic Composite Materials 6, 205–225. https://doi.org/10.1177/089270579300600303

  78. Xiong, X., Zhao, Pu, … Ji, S., 2019. Resistance welded composite joints strengthened by carbon fiber felt: Mechanical properties, failure modes and mechanism. Materials Research Express 6. https://doi.org/10.1088/2053-1591/ab226b

  79. Hou, M., Ye, L., Mai, Y.W.: An experimental study of Resistance Welding of Carbon Fibre Fabric Reinforced Polyetherimide (CF Fabric/PEI) composite material. Appl. Compos. Mater. 6, 35–49 (1999). https://doi.org/10.1023/A:1008879402267

    Article  Google Scholar 

  80. Ageorges, C., Ye, L.: Resistance welding of metal/thermoplastic composite joints. J. Thermoplast. Compos. Mater. 14, 449–475 (2001). https://doi.org/10.1106/PN74-QXKH-7XBE-XKF5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil Kumaran Selvaraj.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Totla, H.S., Gupta, A., Mishra, S. et al. Resistance welding analysis of thermoplastic composite structures in aeronautical applications. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-022-01151-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-022-01151-1

Keywords

Navigation