Skip to main content
Log in

Multidisciplinary robust and reliability-based design optimization of injection molding system

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Even a slight reduction in production cost can make a huge impact in a mass manufacturing domain like injection molding. In this paper, we proposed design modifications to the conventional multi-cavity injection mold insert for the reduction of overall mold material costs required for molding a part family. Additionally, the reduced size of the proposed insert makes it more suitable to manufacture it using metal additive manufacturing and exploit the associated benefits. We also provided formulations to minimize cycle time and pressure drop of the melt simultaneously in the modified design using integrated multi-objective optimization and multidisciplinary design optimization framework. The proposed flexible multi-cavity-inserts are designed to mold multiple part family members whose geometric dimensions are allowed to vary within a permissible limit. Hence, there exists uncertainty in the input variables. Two approaches: robustness-based design optimization and reliability-based design optimization are used to handle the uncertainty in the input variables. A case study is presented to numerically illustrate the implementation of the proposed optimization frameworks. Our formulations provide Pareto optimal design options for the flexible multi-cavity-insert that will open opportunities to produce small plastic parts having dimensional similarity economically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

MATLAB R2018a is used to solve the RDO/AAO and RBDO/AAO formulations presented in Figs. 9 and 10, respectively. The MATLAB codes could be made available on request by emailing the corresponding author.

Abbreviations

\(A_{j}\) :

System compatibility equation corresponding to jth discipline

\(A_{part}\) :

Projected area of the part to be molded on the parting plane, m2

\(A_{proj}\) :

Total projected area of the cavity (along-with runner system), m2

\(c_{mc}\) :

Cost of machining master cavity in the injection mold insert

\(c_{mm}\) :

Cost of mold material per kg

\(c_{r}\) :

Cost of machining runners in the injection mold insert

\({\varvec{cv}}\) :

Vector of all disciplinary coupling variables

\(d_{p}\) :

Depth of the part, m

\({\varvec{d}}\) :

Vector of deterministic design variables (\({\varvec{x}}_{d}\)) as well as the mean values of the random design variables (\({\varvec{x}}_{r}\)), i.e., \({\varvec{d}} = \left[ {{\varvec{x}}_{d} ,{\varvec{\mu}}_{{x_{r} }} } \right]\)

\(d_{gate}\) :

Diameter of gate, m

\(d_{release}\) :

Mold opening distance, m

\(d_{runner}\) :

Diameter of runner, m

\(d_{sprue}\) :

Initial diameter of sprue, m

\(\overline{d}_{sprue}\) :

Mean diameter of sprue, m

\(E(g_{j} )\) :

Expected value or mean of the jth inequality constraint

\(f\) :

Objective function

\(F_{clamp\;max}\) :

Maximum clamping force, N

\(F_{{{\varvec{cv}}_{j} }}\) :

Functional relationship representing jth coupling variable

\(g\) :

Inequality constraint

\(h\) :

Equality constraint

\(k_{v}\) :

Viscosity evaluated at a shear rate of one reciprocal second, Pa sn

\(l_{gate}\) :

Length of gate, m

\(l_{part}\) :

Length of the part, m

\(l_{runner}\) :

Length of runner, m

\(l_{sprue}\) :

Length of sprue, m

\({\varvec{lb}}\) :

Vector of lower bounds of design variables

\({\varvec{LB}}\) :

Vector of lower bounds of inequality constraints

\(Max_{D}\) :

Maximum dimension corresponding to the largest cross-section, perpendicular to the direction of melt flow, m

\(min_{D}\) :

Minimum dimension corresponding to the smallest cross-section, perpendicular to the direction of melt flow, m

\(n\) :

Power law index

\(n_{c}\) :

Number of part cavities

\(n_{pfm}\) :

Number of part-family members

\(n_{rs}\) :

Number of ramification streams

\(ncv\) :

Number of the coupling variables

\(nddv\) :

Numbers of the deterministic design variables

\(nrdv\) :

Numbers of the random design variables

\({\varvec{p}}\) :

Vector of random design parameters

\(P_{{f_{j} }}\) :

Failure probability for jth inequality constraint

\(P_{{f_{j} }}^{allowable}\) :

Allowable (maximum) failure probability for jth inequality constraint

\(P_{inj}\) :

Required injection power, W

\(Q\) :

Volumetric flow rate of the melt, m3/s

\(Q_{max}\) :

Maximum volumetric flow rate of the melt, m3/s

\({\varvec{r}}\) :

Vector of all the random variables, i.e., \({\varvec{r}} = \left[ {{\varvec{x}}_{r} ,\user2{ p}} \right]\)

\(T_{eject}\) :

Recommended part ejection temperature, °C

\(t_{inj}\) :

Injection time, s

\(T_{melt}\) :

Recommended polymer melt temperature, °C

\(T_{mold}\) :

Recommended mold temperature, °C

\({\varvec{u}}\) :

Standard normal space vector corresponding to the vector of random variables, \({\varvec{r}}\)

\(\Vert{\varvec{u}}\Vert\) :

Euclidean norm of vector \({\varvec{u}}\)

\({\varvec{u}}^{*}\) :

Most probable point (MPP) of failure

\({\varvec{ub}}\) :

Vector of upper bounds of design variables

\({\varvec{UB}}\) :

Vector of upper bounds of inequality constraints

\(\overline{v}_{F}\) :

Velocity of the flow front, m/s

\(v_{i}\) :

Volume of injection mold insert, m3

\(v_{p}\) :

Volume of the injection molded part, m3

\(v_{si}\) :

Volume of injection mold sub-insert, m3

\({\varvec{x}}_{d}\) :

Vector of deterministic design variables

\({\varvec{x}}_{r}\) :

Vector of random design variables

\(\alpha\) :

Thermal diffusivity of the polymer material, m2/s

\(\alpha_{sprue}\) :

Draft angle of sprue, degree

\(\beta\) :

Reliability index

\(\beta^{T} { }\) :

Target reliability index

\(\dot{\gamma }_{max}\) :

Maximum shear rate for the plastic, s–1

\(\varepsilon\) :

Percentage shrinkage rate of the polymer from injection temperature to room temperature

\(\eta_{aeff}\) :

Apparent effective viscosity, Pa s

\({\varvec{\mu}}_{{x_{r} }}\) :

Vector of mean values of the random design variables

\(\mu_{f} { }\) :

Mean value of the objective function

\({\varvec{\mu}}_{p}\) :

Vector of mean values of random design parameters

\(\rho_{mm}\) :

Density of injection mold material, kg/m3

\(\sigma \left( {{\varvec{x}}_{r} } \right){ }\) :

Vector of standard deviations of the random design variables

\(\sigma_{{cv_{j} }}^{2}\) :

Variance of jth coupling variable

\(\sigma_{{d_{i} }}^{2}\) :

Variance of ith random design variable

\(\sigma_{{g_{j} }}\) :

Standard deviation of the jth inequality constraint

\(\sigma_{{p_{i} }}^{2} { }\) :

Variance of ith random design parameter

\(\sigma_{f}\) :

Standard deviation of the objective function

\(\varphi\) :

Ratio between width and thickness of the mold cavity

\({\Phi }\) :

Standard Gaussian cumulative distribution function (CDF)

References

  1. Ferreira, I., de Weck, O., Saraiva, P., Cabral, J.: Multidisciplinary optimization of injection molding systems. Struct. Multidiscip. Optim. 41(4), 621–635 (2010)

    Article  Google Scholar 

  2. Tang, Y., Gao, Z., Zhao, Y.F.: Design of conformal porous structures for the cooling system of an injection mold fabricated by additive manufacturing process. J. Mech. Des. 141(10), 101702 (2019)

    Article  Google Scholar 

  3. Mohamed, O.A., Masood, S., Saifullah, A.: A simulation study of conformal cooling channels in plastic injection molding. Int. J. Eng. Res. 2(5), 344–348 (2013)

    Google Scholar 

  4. Khosravani, M.R., Nasiri, S., Reinicke, T.: Intelligent knowledge-based system to improve injection molding process. J. Ind. Inf. Integr. 25, 100275 (2022)

    Google Scholar 

  5. Park, H.-S., Dang, X.-P., Nguyen, D.-S., Kumar, S.: Design of advanced injection mold to increase cooling efficiency. Int. J. Precis. Eng. Manuf. Green Technol. 7(2), 319–328 (2020)

    Article  Google Scholar 

  6. Dinar, M., Rosen, D.W.: A Design for additive manufacturing ontology. J. Comput. Inf. Sci. Eng. 17(2), 021013 (2017)

    Article  Google Scholar 

  7. Chiralaksanakul, A., Mahadevan, S.: Decoupled approach to multidisciplinary design optimization under uncertainty. Optim. Eng. 8(1), 21–42 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cramer, E.J., Dennis, J., John, E., Frank, P.D., Lewis, R.M., Shubin, G.R.: Problem formulation for multidisciplinary optimization. SIAM J. Optim. 4(4), 754–776 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hulme, K., Bloebaum, C.: A simulation-based comparison of multidisciplinary design optimization solution strategies using CASCADE. Struct. Multidiscip. Optim. 19(1), 17–35 (2000)

    Article  Google Scholar 

  10. Ferreira, I., Cabral, J., Saraiva, P., Oliveira, M.: A multidisciplinary framework to support the design of injection mold tools. Struct. Multidiscip. Optim. 49(3), 501–521 (2014)

    Article  Google Scholar 

  11. Van Dijk, R., d Ippolito, R., Tosi, G., La Rocca, G.: Multidisciplinary design and optimization of a plastic injection mold using an integrated design and engineering environment. In: NAFEMS World Congress 2011, Boston, USA, 23–26 May, 2011. NAFEMS Ltd (2011)

  12. Tang, L.Q., Chassapis, C., Manoochehri, S.: Optimal cooling system design for multi-cavity injection molding. Finite Elem. Anal. Des. 26(3), 229–251 (1997)

    Article  MATH  Google Scholar 

  13. Kazmer, D., Barkan, P.: The process capability of multi-cavity pressure control for the injection molding process. Polym. Eng. Sci. 37(11), 1880–1895 (1997)

    Article  Google Scholar 

  14. Lee, K., Lin, J.: Design of the runner and gating system parameters for a multi-cavity injection mould using FEM and neural network. Int. J. Adv. Manuf. Technol. 27(11–12), 1089–1096 (2006)

    Article  Google Scholar 

  15. Kang, M.-A., Lyu, M.-Y.: Investigation of the filling unbalance and dimensional variations in multi-cavity injection molded parts. Polym. Korea 32(6), 501–508 (2008)

    Google Scholar 

  16. Parkinson, A., Sorensen, C., Pourhassan, N.: A general approach for robust optimal design. J. Mech. Des. 115(1), 74–80 (1993)

    Article  Google Scholar 

  17. Ben-Tal, A., Nemirovski, A.: Robust optimization–methodology and applications. Math. Progr. 92(3), 453–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Doltsinis, I., Kang, Z.: Robust design of structures using optimization methods. Comput. Methods Appl. Mech. Eng. 193(23–26), 2221–2237 (2004)

    Article  MATH  Google Scholar 

  19. Chiralaksanakul, A., Mahadevan, S.: First-order approximation methods in reliability-based design optimization. J. Mech. Des. 127(5), 851–857 (2005)

    Article  Google Scholar 

  20. Ramu, P., Qu, X., Youn, B.D., Haftka, R.T., Choi, K.K.: Inverse reliability measures and reliability-based design optimisation. Int. J. Reliab. Saf. 1(1–2), 187–205 (2006)

    Article  Google Scholar 

  21. Agarwal, H., Mozumder, C.K., Renaud, J.E., Watson, L.T.: An inverse-measure-based unilevel architecture for reliability-based design optimization. Struct. Multidiscip. Optim. 33(3), 217–227 (2007)

    Article  Google Scholar 

  22. Du, X., Huang, B.: Reliability-based design optimization with equality constraints. Int. J. Numer. Methods Eng. 72(11), 1314–1331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zaman, K., Rangavajhala, S., McDonald, M.P., Mahadevan, S.: A probabilistic approach for representation of interval uncertainty. Reliab. Eng. Syst. Saf. 96(1), 117–130 (2011)

    Article  Google Scholar 

  24. Zaman, K., Dey, P.R.: Likelihood-based representation of epistemic uncertainty and its application in robustness-based design optimization. Struct. Multidiscip. Optim. 56(4), 767–780 (2017)

    Article  MathSciNet  Google Scholar 

  25. Zaman, K., McDonald, M., Mahadevan, S., Green, L.: Robustness-based design optimization under data uncertainty. Struct. Multidiscip. Optim. 44(2), 183–197 (2011)

    Article  Google Scholar 

  26. Chen, W., Lewis, K.: Robust design approach for achieving flexibility in multidisciplinary design. AIAA J. 37(8), 982–989 (1999)

    Article  Google Scholar 

  27. Du, X., Chen, W.: Efficient uncertainty analysis methods for multidisciplinary robust design. AIAA J. 40(3), 545–552 (2002)

    Article  Google Scholar 

  28. Park, G.-J., Lee, T.-H., Lee, K.H., Hwang, K.-H.: Robust design: an overview. AIAA J. 44(1), 181–191 (2006)

    Article  Google Scholar 

  29. Zaman, K., Mahadevan, S.: Robustness-based design optimization of multidisciplinary system under epistemic uncertainty. AIAA J. 51(5), 1021–1031 (2013)

    Article  Google Scholar 

  30. Allen, J.K., Seepersad, C., Choi, H., Mistree, F.: Robust design for multiscale and multidisciplinary applications. J. Mech. Des. 128(4), 832–843 (2006)

    Article  Google Scholar 

  31. Youn, B.D., Choi, K.K., Park, Y.H.: Hybrid analysis method for reliability-based design optimization. J. Mech. Des. 125(2), 221–232 (2003)

    Article  Google Scholar 

  32. Youn, B.D., Choi, K., Yang, R.-J., Gu, L.: Reliability-based design optimization for crashworthiness of vehicle side impact. Struct. Multidiscip. Optim. 26(3–4), 272–283 (2004)

    Article  Google Scholar 

  33. Aoues, Y., Chateauneuf, A.: Benchmark study of numerical methods for reliability-based design optimization. Struct. Multidiscip. Optim. 41(2), 277–294 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yao, W., Chen, X., Luo, W., van Tooren, M., Guo, J.: Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Progress Aerosp. Sci. 47(6), 450–479 (2011)

    Article  Google Scholar 

  35. Lopez, R.H., de Cursi, J.E.S., Lemosse, D.: Approximating the probability density function of the optimal point of an optimization problem. Eng. Optim. 43(3), 281–303 (2011)

    Article  MathSciNet  Google Scholar 

  36. Niederreiter, H., Spanier, J.: Monte Carlo and quasi-Monte Carlo methods, 1998: proceedings of a conference held at the Claremont Graduate University, Claremont, California, USA, June 22–26, 1998. Springer (2000)

  37. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, vol. 10. Wiley, Hoboken (2016)

    Book  MATH  Google Scholar 

  38. Lee, S.H., Kwak, B.M.: Response surface augmented moment method for efficient reliability analysis. Struct. Saf. 28(3), 261–272 (2006)

    Article  Google Scholar 

  39. Mahadevan, S., Haldar, A.: Probability, Reliability and Statistical Method in Engineering Design. Wiley, Hoboken (2000)

    Google Scholar 

  40. Rackwitz, R., Flessler, B.: Structural reliability under combined random load sequences. Comput. Struct. 9(5), 489–494 (1978)

    Article  MATH  Google Scholar 

  41. Lopez, R.H., Beck, A.T.: Reliability-based design optimization strategies based on FORM: a review. J. Braz. Soc. Mech. Sci. Eng. 34(4), 506–514 (2012)

    Article  Google Scholar 

  42. Madsen, H., Hansen, P.F.: A comparison of some algorithms for reliability based structural optimization and sensitivity analysis. In: Reliability and Optimization of Structural Systems’ 91, pp. 443–451. Springer (1992)

  43. Chen, X., Hasselman, T., Neill, D.: Reliability based structural design optimization for practical applications. In: 38th Structures, Structural Dynamics, and Materials Conference (1997)

  44. Liang, J., Mourelatos, Z.P., Tu, J.: A single-loop method for reliability-based design optimization. In: ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: American Society of Mechanical Engineers Digital Collection (2004)

  45. Royset, J.O., Der Kiureghian, A., Polak, E.: Reliability-based optimal structural design by the decoupling approach. Reliab. Eng. Syst. Saf. 73(3), 213–221 (2001)

    Article  Google Scholar 

  46. Du, X., Chen, W.: Sequential optimization and reliability assessment method for efficient probabilistic design. J. Mech. Des. 126(2), 225–233 (2004)

    Article  Google Scholar 

  47. Melchers, R.E.: Structural Reliability Analysis and Prediction. Wiley, New York (1999)

    Google Scholar 

  48. Haldar, A., Mahadevan, S.: Reliability Assessment Using Stochastic Finite Element Analysis. Wiley, Hoboken (2000)

    Google Scholar 

  49. Madsen, H.O., Krenk, S., Lind, N.C.: Methods of Structural Safety. Courier Corporation, North Chelmsford (2006)

    Google Scholar 

  50. Tu, J., Choi, K.K., Park, Y.H.: A new study on reliability-based design optimization. J. Mech. Des. 121(4), 557–564 (1999)

    Article  Google Scholar 

  51. Zaman, K., Mahadevan, S.: Reliability-based design optimization of multidisciplinary system under aleatory and epistemic uncertainty. Struct. Multidiscip. Optim. 55(2), 681–699 (2017)

    Article  MathSciNet  Google Scholar 

  52. Mayda, M.: An efficient simulation-based search method for reliability-based robust design optimization of mechanical components. Mechanics 23(5), 696–702 (2017)

    Article  Google Scholar 

  53. Lai, X., Huang, J., Zhang, Y., Wang, C., Zhang, X.: A general methodology for reliability-based robust design optimization of computation-intensive engineering problems. J. Comput. Des. Eng. 9, 2151–2169 (2022)

    Google Scholar 

  54. Menges, G., Michaeli, W., Mohren, P.: How to Make Injection Molds. Carl Hanser Verlag GmbH Co KG, Munich (2013)

    Google Scholar 

  55. Moshiri, M., Loaldi, D., Zanini, F., Sgaravato, D., Carmignato, S., Tosello, G.: Analysis of an as-built metal additively manufactured tool cavity insert performance and advantages for plastic injection moulding. J. Manuf. Process. 61, 369–382 (2021)

    Article  Google Scholar 

  56. Kanbur, B.B., Zhou, Y., Shen, S., Wong, K.H., Chen, C., Shocket, A., Duan, F.: Metal additive manufacturing of plastic injection molds with conformal cooling channels. Polymers 14(3), 424 (2022)

    Article  Google Scholar 

  57. Madan, J., Mani, M., Lyons, K.W.: Characterizing energy consumption of the injection molding process. In: ASME 2013 International Manufacturing Science and Engineering Conference Collocated with the 41st North American Manufacturing Research Conference: American Society of Mechanical Engineers (2013)

  58. Nannapaneni, S., Mahadevan, S.: Uncertainty quantification in performance evaluation of manufacturing processes. In: IEEE International Conference on Big Data (Big Data). IEEE (2014)

  59. Weissman, A., Ananthanarayanan, A., Gupta, S.K., Sriram, R.D.: A systematic methodology for accurate design-stage estimation of energy consumption for injection molded parts. In: ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: American Society of Mechanical Engineers Digital Collection (2010)

  60. Du, X., Chen, W.: Towards a better understanding of modeling feasibility robustness in engineering design. J. Mech. Des. 122(4), 385–394 (1999)

    Article  Google Scholar 

  61. Lee, K.-H., Park, G.-J.: Robust optimization considering tolerances of design variables. Comput. Struct. 79(1), 77–86 (2001)

    Article  Google Scholar 

  62. Zou, T., Mahadevan, S.: Versatile formulation for multiobjective reliability-based design optimization. J. Mech. Des. 128(6), 1217–1226 (2006)

    Article  Google Scholar 

  63. Du, X., Wang, Y., Chen, W.: Methods for robust multidisciplinary design. In: 41st Structures, Structural Dynamics, and Materials Conference and Exhibit (2000)

  64. Arora, J.S.: Introduction to Optimum Design. Elsevier, Amsterdam (2004)

    Book  Google Scholar 

  65. Bolur, P.C.: A Guide of Injection Moulding of Plastics. Allied Publishers Ltd., New Delhi (2000)

    Google Scholar 

  66. Krar, S.F., Gill, A., Smid, P.: Computer Numerical Control Simplified. Industrial Press Inc., New York (2001)

    Google Scholar 

  67. Kalita, K., Ghadai, R.K., Chakraborty, S.: A comparative study on multi-objective pareto optimization of WEDM process using nature-inspired metaheuristic algorithms. Int. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01007-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kais Zaman.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, N., Sarker, P. & Zaman, K. Multidisciplinary robust and reliability-based design optimization of injection molding system. Int J Interact Des Manuf 17, 2957–2975 (2023). https://doi.org/10.1007/s12008-022-01139-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01139-x

Keywords

Navigation