Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Detailed study of efficient water jacket cooling system for induction motor drive used in electric vehicle

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

This article was retracted on 21 March 2024

This article has been updated

Abstract

The increment in environmental pollution and the depletion of fossil fuels urge the automobile industry to shift its focus toward the Electric vehicle (EV) market. As the market for EVs grows, the mileage of an electric vehicle with a fully charged battery becomes more important. The mileage of an EV is directly affected by harsh driving conditions or ambient temperature. A proper thermal management system is highly needed in order to improve the mileage of the EV. Aside from the battery, the Induction motor (IM) is one of the most important components of an electric vehicle. It is the heart of the EV propulsion system. The present study concentrated more on the efficient cooling methodology of IM, which also directly influences the performance of the battery. The cooling water circulation mechanism is adopted for efficient cooling of the IM. The entire system is designed with ANSYS finite element software package. Through Computational Fluid Dynamics (CFD), the entire thermal management system is analyzed. The numerical model is verified against the experimental setup and the results show a 0.2% of standard deviation. Additionally, the influence of the motor coolant’s mass flow rate on the pressure drop is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  1. Calearo, L., Marinelli, M., Ziras, C.: A review of data sources for electric vehicle integration studies. Renew. Sustain. Energy Rev. 151, 111518 (2021)

    Article  Google Scholar 

  2. Thorne, R.J., Hovi, I.B., Figenbaum, E., Pinchasik, D.R., Amundsen, A.H., Hagman, R.: Facilitating adoption of electric buses through policy: learnings from a trial in Norway. Energy Policy 155, 112310 (2021)

    Article  Google Scholar 

  3. Appadurai, M., FantinIrudaya Raj, E., Venkadeshwaran, K.: Finite element design and thermal analysis of an induction motor used for a hydraulic pumping system. Mater. Today Proceed. 45, 7100–7106 (2021)

    Article  Google Scholar 

  4. Rauh, H., März, M., Frey, L., Sültrop, C.: Energy optimized implementation of climatisation systems in electric vehicles with integrated drive components. In: Conference on the Future of Automotive Technology. (2014)

  5. Kannan, C., Vignesh, R., Karthick, C., Ashok, B.: Critical review towards thermal management systems of lithium-ion batteries in electric vehicle with its electronic control unit and assessment tools. Proceed. Inst. Mech. Eng. Part D J. Automob. Eng. 235(7), 1783–1807 (2021)

    Article  Google Scholar 

  6. Wang, Y., Gao, Q., Wang, G., Pengyu, Lu., Zhao, M., Bao, W.: A review on research status and key technologies of battery thermal management and its enhanced safety. Int. J. Energy Res. 42(13), 4008–4033 (2018)

    Article  Google Scholar 

  7. Ianniciello, L., Biwolé, P.H., Achard, P.: Electric vehicles batteries thermal management systems employing phase change materials. J. Power Sour. 378, 383–403 (2018)

    Article  Google Scholar 

  8. Akinlabi, A.A.H., Solyali, D.: Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: a review. Renew. Sustain. Energy Rev. 125, 109815 (2020)

    Article  Google Scholar 

  9. Wang, R., Yichun, W., Chaoqing, F., Xilong, Z.: Powertrain preheating system of tracked hybrid electric vehicle in cold weather. Appl. Thermal Eng. 91, 252–258 (2015)

    Article  Google Scholar 

  10. He, H., Zhou, N., Sun, C.: Efficiency decrease estimation of a permanent magnet synchronous machine with demagnetization faults. Energy Procedia 105, 2718–2724 (2017)

    Article  Google Scholar 

  11. Grabowski, M., Urbaniec, K., Wernik, J., Wołosz, K.J.: Numerical simulation and experimental verification of heat transfer from a finned housing of an electric motor. Energy Convers. Manag. 125, 91–96 (2016)

    Article  Google Scholar 

  12. Fawzal, A.S., Cirstea, R.M., Woolmer, T.J., Dickison, M., Blundell, M., Gyftakis, K.N.: Air inlet/outlet arrangement for rotor cooling application of axial flux PM machines. Appl. Thermal Eng. 130, 1520–1529 (2018)

    Article  Google Scholar 

  13. Li, K., Yan, J., Chen, H., Wang, Q.: Water cooling based strategy for lithium ion battery pack dynamic cycling for thermal management system. Appl. Thermal Eng. 132, 575–585 (2018)

    Article  Google Scholar 

  14. Zheng, P., Liu, R., Thelin, P., Nordlund, E., Sadarangani, C.: Research on the cooling system of a 4QT prototype machine used for HEV. IEEE Trans. Energy Convers. 23(1), 61–67 (2008)

    Article  Google Scholar 

  15. Mutlu, Y.: Elektrikli Araç Motorunun Soğutma Sistem Tasarımı, PhD diss., Fen Bilimleri Enstitüsü. (2011)

  16. Rehman, Z., Seong, K.: Three-D numerical thermal analysis of electric motor with cooling jacket. Energies 11(1), 92 (2018)

    Article  Google Scholar 

  17. Polikarpova, M.: Liquid cooling solutions for rotating permanent magnet synchronous machines, (2014).

  18. Satrústegui, M., Martinez-Iturralde, M., Ramos, J.C., Gonzalez, P., Astarbe, G., Elosegui, I.: Design criteria for water cooled systems of induction machines. Appl. Thermal Eng. 114, 1018–1028 (2017)

    Article  Google Scholar 

  19. Zhang, H., Giangrande, P., Sala, G., Zeyuan, Xu., Hua, W., Madonna, V., Gerada, D., Gerada, C.: Thermal model approach to multisector three-phase electrical machines. IEEE Trans. Industr. Electron. 68(4), 2919–2930 (2020)

    Article  Google Scholar 

  20. Ponomarev, P., Polikarpova, M., Pyrhönen, J.: Thermal modeling of directly-oil-cooled permanent magnet synchronous machine. In: 2012 XXth International Conference on Electrical Machines, pp. 1882–1887. IEEE. (2012)

  21. Kral, C., Haumer, A., Bauml, T.: Thermal model and behavior of a totally-enclosed-water-cooled squirrel-cage induction machine for traction applications. IEEE Trans. Industr. Electron. 55(10), 3555–3565 (2008)

    Article  Google Scholar 

  22. Melfi, M.J., Evon, S., McElveen, R.: Induction versus permanent magnet motors. IEEE Ind. Appl. Mag. 15(6), 28–35 (2009)

    Article  Google Scholar 

  23. Raj, E., Irudaya, F., Kamaraj, V.: Neural network based control for switched reluctance motor drive. In: 2013 IEEE international conference on emerging trends in computing, communication and nanotechnology (ICECCN), pp. 678–682. IEEE. (2013)

  24. Fantin Irudaya Raj, E., Appadurai, M.: Minimization of torque ripple and incremental of power factor in switched reluctance motor drive. In: Recent trends in communication and intelligent systems: proceedings of ICRTCIS 2020, pp. 125–133. Springer Singapore, (2021)

  25. Sijini, A.C., Fantin, E., Prakash-Ranjit, L.: Switched reluctance motor for hybrid electric vehicle. Middle-East J. Sci. Res. 24(3), 734–739 (2016)

    Google Scholar 

  26. Raj, E.F.I., Balaji, M.: Analysis and classification of faults in switched reluctance motors using deep learning neural networks. Arabian J. Sci. Eng. 46(2), 1313–1332 (2021)

    Article  Google Scholar 

  27. Raj, E.F.I., Appadurai, M.: (2021) The hybrid electric vehicle (HEV)—an overview, Emerging Solutions for e-Mobility and Smart Grids. 25–36

  28. Kim, S.-H.: Alternating current motors. Electric Motor Control (2017). https://doi.org/10.1016/b978-0-12-812138-2.00003-9

    Article  Google Scholar 

  29. Gundabattini, E., Kuppan, R., Solomon, D.G., Kalam, A., Kothari, D.P., Bakar, R.A.: A review on methods of finding losses and cooling methods to increase efficiency of electric machines. Ain Shams Eng. J. 12(1), 497–505 (2021)

    Article  Google Scholar 

  30. Ulu, C., Korman, O., Kömürgöz, G.: Electromagnetic and thermal design/analysis of an induction motor for electric vehicles. Int. J. Mech. Eng. Robot. Res 8, 239–245 (2019)

    Article  Google Scholar 

  31. Kim, C., Lee, K.S., Yook, S.J.: Effect of air-gap fans on cooling of windings in a large-capacity, high-speed induction motor. Appl. Therm. Eng. 100, 658–667 (2016)

    Article  Google Scholar 

  32. Lindh, P.M., Petrov, I., Semken, R.S., Niemelä, M., Pyrhönen, J.J., Aarniovuori, L., Vaimann, T., Kallaste, A.: Direct liquid cooling in low-power electrical machines: proof-of-concept. IEEE Trans. Energy Convers. 31(4), 1257–1266 (2016)

    Article  Google Scholar 

  33. Rattighieri, G., Trancossi, M., Dorigo Salomon, N., Vucinic, D.: Electric vehicle improved by three-phase asynchronous cooled motor. In: Energy sustainability (vol. 55515, p. V001T12A002). American Society of Mechanical Engineers. (2013)

  34. Fantin Irudaya Raj, E., Appadurai, M.: Static 2D-finite element analysis of eccentricity fault in induction motor. In: Smart Technologies for Energy, Environment and Sustainable Development, vol. 1 (pp. 409–422). Springer, Singapore (2022)

  35. Abdul Karim, Z.A., Mohd Yusoff, A.H.: Cooling system for electric motor of an electric vehicle propulsion. In: Advanced Materials Research, vol. 903, pp. 209–214. Trans Tech Publications Ltd. (2014)

  36. Huang, J., Naini, S.S., Miller, R., Rizzo, D., Sebeck, K., Shurin, S., Wagner, J.: A hybrid electric vehicle motor cooling system—design, model, and control. IEEE Trans. Veh. Technol. 68(5), 4467–4478 (2019)

    Article  Google Scholar 

  37. Kazakov, A.V.: Modeling the cooling system of a small electric motor. In: 2021 International Russian Automation Conference (RusAutoCon) (pp. 650–654). IEEE. (2021)

  38. Ranganathan, P., Pandey, A.K., Sirohi, R., Hoang, A.T., Kim, S.H.: Recent advances in computational fluid dynamics (CFD) modelling of photobioreactors: Design and applications. Bioresource technology. (2022). https://doi.org/10.1016/j.biortech.2022.126920

    Article  Google Scholar 

  39. Appadurai, M., FantinIrudaya Raj, E.: Finite element analysis of lightweight robot fingers actuated by pneumatic pressure. In: Recent Advances in Manufacturing, Automation, Design and Energy Technologies, pp. 379–385. Springer, Singapore (2022)

    Chapter  Google Scholar 

  40. Hammond, J., Pepper, N., Montomoli, F., Michelassi, V.: Machine learning methods in CFD for turbomachinery: a review. Int. J. Turbomach. Propuls. Power 7(2), 16 (2022)

    Article  Google Scholar 

  41. Appadurai, M., Fantin Irudaya Raj, E.: Finite element analysis of composite wind turbine blades. In: 2021 7th International Conference on Electrical Energy Systems (ICEES), pp. 585–589. IEEE, (2021)

  42. Wang, S., Shen, Y.: Coarse-grained CFD-DEM modelling of dense gas-solid reacting flow. Int. J. Heat Mass Transf. 184, 122302 (2022)

    Article  Google Scholar 

  43. Deivakani, M., Sudheer Kumar, S.V., Kumar, N.U., Fantin Irudaya Raj, E., Ramakrishna, V.: VLSI implementation of discrete cosine transform approximation recursive algorithm. In: Journal of Physics: Conference Series. vol. 1817, 1, p. 012017. IOP Publishing, (2021)

  44. Badoe, C.E., Edmunds, M., Williams, A.J., Nambiar, A., Sellar, B., Kiprakis, A., Masters, I.: Robust validation of a generalised actuator disk CFD model for tidal turbine analysis using the FloWave ocean energy research facility. Renew. Energy 190, 232–250 (2022)

    Article  Google Scholar 

  45. Chandrika, V.S., Isaac, J.S., Daniel, J., Kathiresan, K., Muthiah, C.T., Raj, E.F.I., Subbiah, R.: Experimental investigation of the solar distiller using nano-black paint for different water depths. Mater. Today Proceed. 56, 1406–1410 (2022)

    Article  Google Scholar 

  46. Mohammadpour, J., Husain, S., Salehi, F., Lee, A.: Machine learning regression-CFD models for the nanofluid heat transfer of a microchannel heat sink with double synthetic jets. Int. Commun. Heat Mass Transfer 130, 105808 (2022)

    Article  Google Scholar 

  47. Appadurai, M., Raj, E., Jenish, I.: Application of aluminium oxide–water nanofluids to augment the performance of shallow pond: a numerical study. Process Integr. Optim. Sustain. (2021). https://doi.org/10.1007/s41660-021-00213-3

    Article  Google Scholar 

  48. Xu, X., Waschkowski, F., Ooi, A.S., Sandberg, R.D.: Towards robust and accurate Reynolds-averaged closures for natural convection via multi-objective CFD-driven machine learning. Int. J. Heat Mass Transf. 187, 122557 (2022)

    Article  Google Scholar 

  49. Nonaka, S., Yamamoto, M., Nakano, M., Kawase, M.: Analysis of ventilation and cooling system for induction motors. IEEE Trans. Power Appar. Syst. 11, 4636–4643 (1981)

    Article  Google Scholar 

  50. Farsane, K., Desevaux, P., Panday, P.K.: Experimental study of the cooling of a closed type electric motor. Appl. Therm. Eng. 20(14), 1321–1334 (2000)

    Article  Google Scholar 

  51. Lee, Y., Hahn, S.Y., Kauh, S.K.: Thermal analysis of induction motor with forced cooling channels. IEEE Trans. Magn. 36(4), 1398–1402 (2000)

    Article  Google Scholar 

  52. Boglietti, A., Cavagnino, A.: Analysis of the endwinding cooling effects in TEFC induction motors. In: Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, vol. 2, pp. 797–804. IEEE. (2006)

  53. Li, C., Cheng, S., Li, J., Li, H.: Heat dissipation evaluation and optimization of air cooling induction motor used for mini electric vehicle. In: 2017 20th International Conference on Electrical Machines and Systems (ICEMS), pp. 1–5. IEEE. (2017)

  54. Toren, M., Mollahasanoglu, H.: Investigation of thermoelectric cooler system effect on induction motor performance. In: 2021 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), pp. 1–4. IEEE. (2021)

  55. Venturini, G., Volpe, G., Popescu, M.: Slot Water jacket cooling system for traction electrical machines with hairpin windings: analysis and comparison. In: 2021 IEEE International Electric Machines & Drives Conference (IEMDC), pp. 1–6. IEEE. (2021)

Download references

Acknowledgements

Not Applicable

Funding

This research was not funded by any entity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fantin Irudaya Raj.

Ethics declarations

Conflict of interest

The authors state that they do not have any known competing financial interests or personal ties that could appear to have influenced the work disclosed in this study.

Consent for publication

Not Applicable.

Consent to participate

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s12008-024-01784-4"

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, E.F.I., Appadurai, M., Darwin, S. et al. RETRACTED ARTICLE: Detailed study of efficient water jacket cooling system for induction motor drive used in electric vehicle. Int J Interact Des Manuf 17, 1277–1288 (2023). https://doi.org/10.1007/s12008-022-01119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01119-1

Keywords

Navigation