Skip to main content

Advertisement

Log in

Optimization assisted redesigning a structure of a hydrogen valve: the redesign process and numerical evaluations

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This study introduced the redesign process of an automotive hydrogen valve. The process relied on the structural optimization approach, which used to build up the new valves having promising stiffness and the lowest possible weights. To achieve the goals, the study was proposed to be taken place via the three main stages. These stages included topology optimization, lattice optimization, as well as numerical evaluations. The achieved results firstly indicated that the two newly designed valves possessed longer life and lower mass than the original valve. Especially, the topology optimized one could withstand more than 5E4 working cycles in the pre-treated condition before the first crack would be nucleated. The results also pointed out the influences of the pre-treatment pressure on the fatigue performance of the hydrogen valve. Within the examined ranges of the pressure, increasing the pressure’s magnitudes tended to shorten the fatigue life of the topology optimized valve. Additionally, the results highlighted the impact of the employed materials on the estimated fatigue life of such a non-treated structure. In the highlights, the considered steel valves could function normally far beyond 1.5E5 working cycles while the aluminum valves would have an initial crack formation prior to reaching 3E3 cycles. The results also suggested that further practical evidence is needed to not only confirm whether the selected printed aluminum is among the promising candidate materials of the hydrogen valve but also to support the described evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\( b \) :

Fatigue strength exponent

\( c \) :

Fatigue ductility exponent

\( E \) :

Elastic modulus

\( K \) :

Real stiffness matrix of elements

\( \tilde{K} \) :

Penalized stiffness matrix

\( K_{TREAT} \) :

Surface treatment factor

\( K_{USER} \) :

User surface factor

\( N_{f} \) :

Half number of reversals to failure

\( P \) :

Factor for penalization

\( R_{a} \) :

Surface roughness

\( S \) :

Material constant

\( \gamma_{max} \) :

Maximal shear strain amplitude on critical plane

\( \delta \varepsilon_{n} \) :

Normal strain range on maximal shear strain plane

\( \tilde{\varepsilon } \) :

Path-independent damage parameter (Wang-Brown)

\( \varepsilon_{f}^{\prime } \) :

Fatigue ductility coefficient

\( \vartheta \) :

Poisson ratio

\( \vartheta^{\prime } \) :

Effective Poisson ratio

\( \rho \) :

Element density

\( \sigma_{f}^{'} \) :

Fatigue strength coefficient

\( \sigma_{n, mean} \) :

Mean stress normal to maximal shear strain plane

AF:

Autofrettage

CAD:

Computer-aided design

DMLS:

Direct metal laser sintering

EN:

Strain-fife

FE:

Finite element

FSO:

Free shape optimization

GBES:

General body element size

LO:

Lattice optimization

LV2:

Lattice valve – version 2

MAM:

Metal-based additive manufacturing

MES:

Minimal element size

OV:

Original valve

PHSS:

Precipitation hardening stainless steel

SIMP:

Solid isotropic material with penalization

TNoE:

Total number of elements

TO:

Topology optimization

TPRD:

Thermal pressure release device

WB-mean:

Wang-Brown method with mean stress correction

References

  1. Cavazzuti, M.: Optimization Methods: From Theory to Design. Springer, Berlin (2013)

    Book  Google Scholar 

  2. Steinbuch, R., Gekeler, S.: Bionic Optimization in Structural Design. Springer, Berlin (2016)

    Book  Google Scholar 

  3. Zhu, J.H., Zhang, W.H., Xia, L.: Topology optimization in aircraft and aerospace structures design. Arch. Comput. Methods Eng. 23, 595–622 (2016). https://doi.org/10.1007/s11831-015-9151-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Wong, J., Ryan, L., Kim, I.Y.: Design optimization of aircraft landing gear assembly under dynamic loading. Struct. Multidiscip. Optim. 57, 1357–1375 (2018). https://doi.org/10.1007/s00158-017-1817-y

    Article  Google Scholar 

  5. Xiao, D., Zhang, H., Liu, X., He, T., Shan, Y.: Novel steel wheel design based on multi-objective topology optimization. J. Mech. Sci. Technol. 28, 1007–1016 (2014). https://doi.org/10.1007/s12206-013-1174-8

    Article  Google Scholar 

  6. Chiandussi, G., Gaviglio, I., Ibba, A.: Topology optimisation of an automotive component without final volume constraint specification. Adv. Eng. Softw. 35, 609–617 (2004). https://doi.org/10.1016/j.advengsoft.2003.07.002

    Article  MATH  Google Scholar 

  7. Tomlin, M., Meyer, J.: Topology optimization of an Additive Layer Manufactured (ALM) aerospace part. In: Proceeding 7th Altair CAE Technology Conference pp. 1–9 (2011)

  8. Barbieri, S.G., Giacopini, M., Mangeruga, V., Mantovani, S.: A design strategy based on topology optimization techniques for an additive manufactured high performance engine piston. Procedia Manuf. 11, 641–649 (2017). https://doi.org/10.1016/j.promfg.2017.07.162

    Article  Google Scholar 

  9. Berrocal, L., Fernández, R., González, S., Periñán, A., Tudela, S., Vilanova, J., Rubio, L., Martín Márquez, J.M., Guerrero, J., Lasagni, F.: Topology optimization and additive manufacturing for aerospace components. Prog. Addit. Manuf. (2018). https://doi.org/10.1007/s40964-018-0061-3

    Article  Google Scholar 

  10. Cavazzuti, M., Baldini, A., Bertocchi, E., Costi, D., Torricelli, E., Moruzzi, P.: High performance automotive chassis design: a topology optimization based approach. Struct. Multidiscip. Optim. 44, 45–56 (2011). https://doi.org/10.1007/s00158-010-0578-7

    Article  Google Scholar 

  11. Ikeya, K., Shimoda, M., Shi, J.-X.: Multi-objective free-form optimization for shape and thickness of shell structures with composite materials. Compos. Struct. 135, 262–275 (2016). https://doi.org/10.1016/J.COMPSTRUCT.2015.09.011

    Article  Google Scholar 

  12. Jiang, L., Zhang, W., Ma, G.J., Wu, C.W.: Shape optimization of energy storage flywheel rotor. Struct. Multidiscip. Optim. 55, 739–750 (2017). https://doi.org/10.1007/s00158-016-1516-0

    Article  Google Scholar 

  13. Panesar, A., Abdi, M., Hickman, D., Ashcroft, I.: Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing. Addit. Manuf. 19, 81–94 (2018). https://doi.org/10.1016/J.ADDMA.2017.11.008

    Article  Google Scholar 

  14. Gorguluarslan, R.M., Gandhi, U.N., Song, Y., Choi, S.-K.: An improved lattice structure design optimization framework considering additive manufacturing constraints. Rapid Prototyp. J. 23, 305–319 (2017). https://doi.org/10.1108/RPJ-10-2015-0139

    Article  Google Scholar 

  15. Cheng, L., Liu, J., To, A.C.: Concurrent lattice infill with feature evolution optimization for additive manufactured heat conduction design. Struct. Multidiscip. Optim. 58, 511–535 (2018). https://doi.org/10.1007/s00158-018-1905-7

    Article  Google Scholar 

  16. Cao, T.B., Kedziora, S.: Innovative designs of an in-tank hydrogen valve towards direct metal laser sintering compatibility and fatigue life enhancement. Struct. Multidiscip. Optim. (2019). https://doi.org/10.1007/s00158-018-2174-1

    Article  Google Scholar 

  17. Li, C., Kim, I.Y., Jeswiet, J.: Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization. Struct. Multidiscip. Optim. 51, 547–564 (2015). https://doi.org/10.1007/s00158-014-1151-6

    Article  Google Scholar 

  18. Jang, I.G., Kim, K.S., Kwak, B.M.: Conceptual and basic designs of the Mobile Harbor crane based on topology and shape optimization. Struct. Multidiscip. Optim. 50, 505–515 (2014). https://doi.org/10.1007/s00158-014-1073-3

    Article  Google Scholar 

  19. Tofail, S.A.M., Koumoulos, E.P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., Charitidis, C.: Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today (2017). https://doi.org/10.1016/j.mattod.2017.07.001

    Article  Google Scholar 

  20. Ford, S., Despeisse, M.: Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J. Clean. Prod. 137, 1573–1587 (2016). https://doi.org/10.1016/j.jclepro.2016.04.150

    Article  Google Scholar 

  21. Ball, M., Weeda, M.: The hydrogen economy—vision or reality? Int. J. Hydrog Energy 40, 7903–7919 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.032

    Article  Google Scholar 

  22. News - Road Vehicles: Alphabet adds Toyota Mirai cars for fleet of FCEVs in Germany. Fuel Cells Bull 2017, 2 (2017). https://doi.org/10.1016/S1464-2859(17)30402-9

    Article  Google Scholar 

  23. News - Road Vehicles: Honda begins Clarity Fuel Cell deliveries in Europe, California. Fuel Cells Bull. 2017, 2 (2017). https://doi.org/10.1016/S1464-2859(17)30002-0

    Article  Google Scholar 

  24. News - Road Vehicles: Audi unveils h-tron quattro concept car at Detroit auto show. Fuel Cells Bull 2016, 2 (2016). https://doi.org/10.1016/S1464-2859(16)70003-4

    Article  Google Scholar 

  25. Commission Regulation (EU) No 406/2010: implementing Regulation (EC) No 79/2009 of the European Parliament and of the Council on type-approval of hydrogen-powered motor vehicles

  26. Helmolt, R., Eberle, U.: Fuel cell vehicles: status 2007. J. Power Sources 165, 833–843 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.073

    Article  Google Scholar 

  27. Sellen, S., Maas, S., Andreas, T., Plapper, P., Zürbes, A., Becker, D.: Design rules for autofrettage of an aluminium valve body. Fatigue Fract. Eng. Mater. Struct. 39, 68–78 (2016). https://doi.org/10.1111/ffe.12328

    Article  Google Scholar 

  28. Sellen, S., Maas, S., Andreas, T., Plapper, P., Zürbes, A., Becker, D.: Improved design of threaded connections by autofrettage in aluminium compounds for cyclic high pressure loading: design calculations and experimental verification. Fatigue Fract. Eng. Mater. Struct. 38, 714–729 (2015). https://doi.org/10.1111/ffe.12270

    Article  Google Scholar 

  29. Altair University: Practical Aspects of Structural Optimization (A Study Guide)

  30. Sellen, S.: Untersuchung der Ermüdungsfestigkeit von komplexen innendruckbelasteten Aluminiumgeometrien und der Lebensdauersteigerung durch Autofrettage, (2014)

  31. Romano, S., Patriarca, L., Foletti, S., Beretta, S.: LCF behaviour and a comprehensive life prediction model for AlSi10Mg obtained by SLM. Int. J. Fatigue 117, 47–62 (2018). https://doi.org/10.1016/J.IJFATIGUE.2018.07.030

    Article  Google Scholar 

  32. Yadollahi, A., Thompson, S.M., Elwany, A., Bian, L.: Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. Int. J. Fatigue 94, 218–235 (2017). https://doi.org/10.1016/J.IJFATIGUE.2016.03.014

    Article  Google Scholar 

  33. Branco, R., Costa, J., Berto, F., Razavi, S., Ferreira, J., Capela, C., Santos, L., Antunes, F.: Low-cycle fatigue behaviour of AISI 18Ni300 maraging steel produced by selective laser melting. Metals (Basel) 8, 32 (2018). https://doi.org/10.3390/met8010032

    Article  Google Scholar 

  34. HBM United Kingdom Limited: nCode DesignLife Theory Guide. (2016)

  35. Wang, C.H., Brown, M.W.: A path-independent parameter for fatigue under proportional and non proportional loading. Fatigue Fract. Eng. Mater. Struct. 16, 1285–1297 (1993). https://doi.org/10.1111/j.1460-2695.1993.tb00739.x

    Article  Google Scholar 

  36. You, B.R., Lee, S.B.: A critical review on multiaxial fatigue assessments of metals. Int. J. Fatigue 18, 235–244 (1996). https://doi.org/10.1016/0142-1123(96)00002-3

    Article  Google Scholar 

  37. Karolczuk, A., Macha, E.: A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. Int. J. Fract. 134, 267–304 (2005). https://doi.org/10.1007/s10704-005-1088-2

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support, provided by the University of Luxembourg. They would also like to give the sincere thanks to ROTAREX S. A. for sharing the original model of the hydrogen valve.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Binh Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, T.B., Kedziora, S., Sellen, S. et al. Optimization assisted redesigning a structure of a hydrogen valve: the redesign process and numerical evaluations. Int J Interact Des Manuf 14, 613–629 (2020). https://doi.org/10.1007/s12008-020-00648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-020-00648-x

Keywords

Navigation