Skip to main content
Log in

Approximated analytical approach for temperature calculation in pulsed arc welding

  • Short Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In the modern welding industry, numerical modeling and simulation has become an invaluable tool in order to set up or tune new welding processes. For this purpose, the temperature distribution in a work piece can be modeled by a variety of different heat source models and numerical methods, including finite elements, volumes or differences. Arc welding applications usually employ pulsed power sources to increase efficiency and precision, which, by having to choose finer time stepping, increases the numerical expenses required in the simulations. Instead of the classical methods, in this contribution a Green’s function approach and the classical Goldak double-ellipsoidal heat source is used, getting an approximate analytical solution for the temperature field for a pulsed arc welding process, which is computationally efficient to evaluate and thus highly applicable. We derive an explicit equation for the temperature distribution, where only the time integration has to be solved approximately, run numerical tests and compare the results with FEM calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goldak, J., Chakravarti, A., Bibby, M.: A new finite element model for welding heat sources. Metall. Trans. B 15B, 299–304 (1984)

    Article  Google Scholar 

  2. Roshyara, N.R., Wilhelm, G., Semmler, U., Meyer, A.: Approximate analytical solution for the temperature field in welding. Metall. Mater. Trans. B 42B, 1253–1273 (2011)

    Article  Google Scholar 

  3. Strauss, W.A.: Partial Differential Equations: An Introduction, 2nd edn. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  4. Rosenthal, D.: Mathematical theory of heat distribution during welding and cutting. Weld. J. 20, 220–234 (1941)

    Google Scholar 

  5. Eager, T.W., Tsai, N.S.: Temperature fields produced by travelling distributed heat sources. Weld. J. 62, 346–355 (1983)

    Google Scholar 

  6. Komanduri, R., Hou, Z.B.: Thermal analysis of the arc welding process: Part II: effect of variation of thermophysical properties with temperature. Metall. Mater. Trans. B 32, 483–499 (2001)

    Article  Google Scholar 

  7. Nguyen, N.T.: Thermal Analysis of Welds. WIT Press, Southampton (2004)

    Book  Google Scholar 

  8. Hirata, Y.: Pulsed arc welding. Weld. Int. 17, 98–115 (2003)

    Article  Google Scholar 

  9. Antimirov, M.Y., Kolyshkin, A.A., Vaillancourt, R.: Applied Integral Transforms. American Mathematical Society, Providence (1993)

    MATH  Google Scholar 

  10. Scott, L.R.: Introduction to Automated Modeling with FEniCS, Computational Modeling Initiative, (2018)

  11. Logg, A., Mardal, K.-A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Kempf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the sake of completeness, we state the explicit form of (6) using the error function. After using the definitions of \(q_i\) and G and integration of the spatial integrals, we get

$$\begin{aligned} \begin{aligned} u(x,t) =&\frac{3\sqrt{3}}{4\pi \sqrt{\pi }c\rho } \int _0^t Q(\tau ) \\&\times \left( f_r I_{1r}(x_1,t,\tau ) + f_f I_{1f}(x_1,t,\tau )\right) \\&\times I_2(x_2,t,\tau ) I_3(x_3,t,\tau ) d\tau , \end{aligned} \end{aligned}$$
(7)

where the functions \(I_i(x_i,\xi _i,t,\tau )\) are defined as follows.

$$\begin{aligned}&I_{1r}(x_1,t,\tau ) = \frac{1}{\sqrt{12 \alpha (t-\tau ) + \delta _{1r}(\tau )^2}} \\&\quad \times \sum _{n=0}^\infty \left\{ \exp \left[ -\frac{3(x_1-v\tau +2nL)^2}{\delta _{1r}(\tau )^2+12\alpha (t-\tau )}\right] \right. \\&\quad \times \left( {\text {erf}}\left[ \frac{12v\tau \alpha (t-\tau )+\delta _{1r}(\tau )^2(x_1+2nL)}{2\delta _{1r}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1r}(\tau )^2}}\right] \right. \\&\qquad \left. + {\text {erf}}\left[ \frac{\delta _{1r}(\tau )^2(-x_1+v\tau -2nL)}{2\delta _{1r}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1r}(\tau )^2}}\right] \right) \\&\qquad + \exp \left[ -\frac{3(x_1+v\tau +2nL)^2}{\delta _{1r}(\tau )^2+12\alpha (t-\tau )}\right] \\&\quad \times \left( {\text {erf}}\left[ \frac{12v\tau \alpha (t-\tau )+\delta _{1r}(\tau )^2(-x_1-2nL)}{2\delta _{1r}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1r}(\tau )^2}}\right] \right. \\&\qquad \left. +{\text {erf}}\left[ \frac{\delta _{1r}(\tau )^2(x_1+v\tau +2nL)}{2\delta _{1r}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1r}(\tau )^2}}\right] \right) \\&\qquad + \exp \left[ -\frac{3(x_1+v\tau -2(n+1)L)^2}{\delta _{1r}(\tau )^2+12\alpha (t-\tau )}\right] \\&\quad \times \left( {\text {erf}}\left[ \frac{12v\tau \alpha (t-\tau )+\delta _{1r}(\tau )^2(-x_1+2(n+1)L)}{2\delta _{1r}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1r}(\tau )^2}}\right] \right. \\&\qquad \left. +{\text {erf}}\left[ \frac{\delta _{1r}(\tau )^2(x_1+v\tau -2(n+1)L)}{2\delta _{1r}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1r}(\tau )^2}}\right] \right) \\&\qquad + \exp \left[ -\frac{3(x_1-v\tau -2(n+1)L)^2}{\delta _{1r}(\tau )^2+12\alpha (t-\tau )}\right] \\&\quad \times \left( {\text {erf}}\left[ \frac{12v\tau \alpha (t-\tau )+\delta _{1r}(\tau )^2(x_1-2(n+1)L)}{2\delta _{1r}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1r}(\tau )^2}}\right] \right. \\&\qquad \left. +\left. {\text {erf}}\left[ \frac{\delta _{1r}(\tau )^2(-x_1+v\tau +2(n+1)L)}{2\delta _{1r}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1r}(\tau )^2}}\right] \right) \right\} \\&I_{1f}(x_1,t,\tau ) = \frac{1}{\sqrt{12 \alpha (t-\tau ) + \delta _{1f}(\tau )^2}} \\&\quad \times \sum _{n=0}^\infty \left\{ \exp \left[ -\frac{3(x_1-v\tau +2nL)^2}{\delta _{1f}(\tau )^2+12\alpha (t-\tau )}\right] \right. \\&\quad \times \left( {\text {erf}}\left[ \frac{12(L-v\tau )\alpha (t-\tau )+\delta _{1f}(\tau )^2(-x_1-(2n-1)L)}{2\delta _{1f}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1f}(\tau )^2}}\right] \right. \\&\qquad \left. + {\text {erf}}\left[ \frac{\delta _{1f}(\tau )^2(x_1-v\tau +2nL)}{2\delta _{1f}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1f}(\tau )^2}}\right] \right) \\&\qquad + \exp \left[ -\frac{3(x_1+v\tau +2nL)^2}{\delta _{1f}(\tau )^2+12\alpha (t-\tau )}\right] \\&\quad \times \left( {\text {erf}}\left[ \frac{12(L-v\tau )\alpha (t-\tau )+\delta _{1f}(\tau )^2(x_1+(2n+1)L)}{2\delta _{1f}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1f}(\tau )^2}}\right] \right. \\&\qquad \left. +{\text {erf}}\left[ \frac{\delta _{1f}(\tau )^2(-x_1-v\tau -2nL)}{2\delta _{1f}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1f}(\tau )^2}}\right] \right) \\&\qquad + \exp \left[ -\frac{3(x_1+v\tau -2(n+1)L)^2}{\delta _{1f}(\tau )^2+12\alpha (t-\tau )}\right] \\&\quad \times \left( {\text {erf}}\left[ \frac{12(L-v\tau )\alpha (t-\tau )+\delta _{1f}(\tau )^2(x_1-(2n+1)L)}{2\delta _{1f}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1f}(\tau )^2}}\right] \right. \\&\qquad \left. +{\text {erf}}\left[ \frac{\delta _{1f}(\tau )^2(-x_1-v\tau +2(n+1)L)}{2\delta _{1f}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1f}(\tau )^2}}\right] \right) \\&\qquad + \exp \left[ -\frac{3(x_1-v\tau -2(n+1)L)^2}{\delta _{1f}(\tau )^2+12\alpha (t-\tau )}\right] \\&\quad \times \left( {\text {erf}}\left[ \frac{12(L-v\tau )\alpha (t-\tau )+\delta _{1f}(\tau )^2(-x_1+(2n+3)L)}{2\delta _{1f}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1f}(\tau )^2}}\right] \right. \\&\qquad \left. +\left. {\text {erf}}\left[ \frac{\delta _{1f}(\tau )^2(x_1-v\tau -2(n+1)L)}{2\delta _{1f}(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _{1f}(\tau )^2}}\right] \right) \right\} \\ \end{aligned}$$
$$\begin{aligned}&I_2(x_2,t,\tau ) = \frac{1}{\sqrt{12 \alpha (t-\tau ) + \delta _2(\tau )^2}} \\&\quad \times \sum _{n=0}^\infty \left\{ \exp \left[ -\frac{3(x_2+2nB-B_1)^2}{\delta _2(\tau )^2+12\alpha (t-\tau )}\right] \right. \\&\quad \times \left( {\text {erf}}\left[ \frac{12B_1\alpha (t-\tau )+\delta _2(\tau )^2(x_2+2nB)}{2\delta _2(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _2(\tau )^2}}\right] \right. \\&\qquad \left. + {\text {erf}}\left[ \frac{12B_2\alpha (t-\tau )+\delta _2(\tau )^2(-x_2-(2n-1)B)}{2\delta _2(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _2(\tau )^2}}\right] \right) \\&\qquad + \exp \left[ -\frac{3(x_2+2nB+B_1)^2}{\delta _2(\tau )^2+12\alpha (t-\tau )}\right] \\&\quad \times \left( {\text {erf}}\left[ \frac{12B_1\alpha (t-\tau )+\delta _2(\tau )^2(-x_2-2nB)}{2\delta _2(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _2(\tau )^2}}\right] \right. \\&\qquad \left. +{\text {erf}}\left[ \frac{12B_2\alpha (t-\tau )+\delta _2(\tau )^2(x_2+(2n+1)B)}{2\delta _2(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _2(\tau )^2}}\right] \right) \\&\qquad + \exp \left[ -\frac{3(x_2-2(n+1)B+B_1)^2}{\delta _2(\tau )^2+12\alpha (t-\tau )}\right] \\&\quad \times \left( {\text {erf}}\left[ \frac{12B_1\alpha (t-\tau )+\delta _2(\tau )^2(-x_2+2(n+1)B)}{2\delta _2(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _2(\tau )^2}}\right] \right. \\&\qquad \left. +{\text {erf}}\left[ \frac{12B_2\alpha (t-\tau )+\delta _2(\tau )^2(x_2-(2n+1)B)}{2\delta _2(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _2(\tau )^2}}\right] \right) \\&\qquad + \exp \left[ -\frac{3(x_2-2(n+1)B-B_1)^2}{\delta _2(\tau )^2+12\alpha (t-\tau )}\right] \\&\quad \times \left( {\text {erf}}\left[ \frac{12B_1\alpha (t-\tau )+\delta _2(\tau )^2(x_2-2(n+1)B)}{2\delta _2(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _2(\tau )^2}}\right] \right. \\&\qquad \left. +\left. {\text {erf}}\left[ \frac{12B_2\alpha (t-\tau )+\delta _2(\tau )^2(-x_2+(2n+3)B)}{2\delta _2(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _2(\tau )^2}}\right] \right) \right\} \end{aligned}$$
$$\begin{aligned}&I_3(x_3,t,\tau ) = \frac{1}{\sqrt{12 \alpha (t-\tau ) + \delta _3(\tau )^2}}\\&\quad \times \sum _{n=0}^\infty \left\{ \exp \left[ -\frac{3(x_3-2(n+1)H)^2}{\delta _3(\tau )^2+12\alpha (t-\tau )}\right] \right. \\&\quad \times \left( {\text {erf}}\left[ \frac{12H\alpha (t-\tau )+\delta _3(\tau )^2(x_3-(2n+1)H)}{2\delta _3(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _3(\tau )^2}}\right] \right. \\&\qquad \left. + {\text {erf}}\left[ \frac{12H\alpha (t-\tau )+\delta _3(\tau )^2(-x_3+(2n+3)H)}{2\delta _3(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _3(\tau )^2}}\right] \right) \\&\qquad + \exp \left[ -\frac{3(x_3+2nH)^2}{\delta _3(\tau )^2+12\alpha (t-\tau )}\right] \\&\quad \times \left( {\text {erf}}\left[ \frac{12H\alpha (t-\tau )+\delta _3(\tau )^2(-x_3-(2n-1)H)}{2\delta _3(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _3(\tau )^2}}\right] \right. \\&\qquad \left. +\left. {\text {erf}}\left[ \frac{12H\alpha (t-\tau )+\delta _3(\tau )^2(x_3+(2n+1)H)}{2\delta _3(\tau )\sqrt{\alpha (t-\tau )(12\alpha (t-\tau )+\delta _3(\tau )^2}}\right] \right) \right\} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kempf, V. Approximated analytical approach for temperature calculation in pulsed arc welding. Int J Interact Des Manuf 14, 675–681 (2020). https://doi.org/10.1007/s12008-019-00638-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-019-00638-8

Keywords

Mathematics Subject Classification

Navigation