Skip to main content
Log in

Multi-scale shape optimisation of lattice structures: an evolutionary-based approach

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This study deals with the problem of the least-weight design of a lattice structure subject to constraints of different nature. To face this problem, a general multi-scale optimisation procedure is proposed. This approach aims at optimising both global and local geometric parameters defining the shape of the representative volume element of the lattice at the mesoscopic scale. The optimisation procedure involves design requirements defined at different scales: geometric and manufacturing constraints are involved at the mesoscopic scale, whilst thermodynamic constraints on the positive definiteness of the stiffness tensor of the lattice (modelled as an equivalent homogeneous anisotropic medium) intervene at the macroscopic scale. Finally, since lattice structures usually undergo compressive loads, a requirement on the first local buckling load is considered too. The proposed approach is based on (a) the non-uniform rational basis splines curves theory to describe the shape of the struts composing the lattice, (b) the strain energy homogenisation technique of periodic media to perform the scale transition and (c) a special genetic algorithm to perform optimisation calculations. The optimised solutions provided by the presented method are characterised by a weight saving of about \(39\%\) with slightly enhanced mechanical properties when compared to conventional octahedral lattice structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dallago, M., Benedetti, M., Luchin, V., Fontanari, V.: Orthotropic elastic constants of 2D cellular structures with variously arranged square cells: the effect of filleted wall junctions. Int. J. Mech. Sci. 122, 63–78 (2017)

    Article  Google Scholar 

  2. Huang, S.H., Liu, P., Mokasdar, A., Hou, L.: Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Technol. 67(5–8), 1191–1203 (2012)

    Google Scholar 

  3. Deshpande, V., Fleck, N., Ashby, M.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49(8), 1747–1769 (2001)

    Article  Google Scholar 

  4. Dong, L., Deshpande, V., Wadley, H.: Mechanical response of Ti–6Al–4V octet-truss lattice structures. Int. J. Solids Struct. 60–61, 107–124 (2015)

    Article  Google Scholar 

  5. Malek, S., Gibson, L.: Effective elastic properties of periodic hexagonal honeycombs. Mech. Mater. 91, 226–240 (2015)

    Article  Google Scholar 

  6. Kim, H., Al-Hassani, S.: Effective elastic constants of two-dimensional cellular materials with deep and thick cell walls. Int. J. Mech. Sci. 45(12), 1999–2016 (2003)

    Article  Google Scholar 

  7. De Pasquale, G., Luceri, F., Riccio, M.: Experimental evaluation of selective laser melting process for optimized lattice structures. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. (2018). https://doi.org/10.1177/0954408918803194

    Article  Google Scholar 

  8. De Pasquale, G., Luceri, F., Riccio, M.: Experimental characterization of SLM and EBM cubic lattice structures for lightweight application. Exp. Mech. (2019). https://doi.org/10.1007/s11340-019-00481-8

    Article  Google Scholar 

  9. Shen, Y., Mckown, S., Tsopanos, S., Sutcliffe, C., Mines, R., Cantwell, W.: The mechanical properties of sandwich structures based on metal lattice architectures. J. Sandw. Struct. Mater. 12(2), 159–180 (2010)

    Article  Google Scholar 

  10. Yang, W., Xiong, J., Feng, L.-J., Pei, C., Wu, L.-Z.: Fabrication and mechanical properties of three-dimensional enhanced lattice truss sandwich structures. J. Sandw. Struct. Mater. (2018). https://doi.org/10.1177/1099636218789602

    Article  Google Scholar 

  11. Li, B., Liu, Y., Tan, K.-T.: A novel meta-lattice sandwich structure for dynamic load mitigation. J. Sandw. Struct. Mater. (2017). https://doi.org/10.1177/1099636217727144

    Article  Google Scholar 

  12. Ptochos, E., Labeas, G.: Elastic modulus and Poisson’s ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods. J. Sandw. Struct. Mater. 14(5), 597–626 (2012)

    Article  Google Scholar 

  13. Dragoni, E.: Optimal mechanical design of tetrahedral truss cores for sandwich constructions. J. Sandw. Struct. Mater. 15(4), 464–484 (2013)

    Article  Google Scholar 

  14. Chu, C., Graf, G., Rosen, D.W.: Design for additive manufacturing of cellular structures. Comput. Aided Des. Appl. 5(5), 686–696 (2008)

    Article  Google Scholar 

  15. Chang, P.S., Rosen, D.W.: The size matching and scaling method: a synthesis method for the design of mesoscale cellular structures

  16. Nguyen, J., Park, S.-I., Rosen, D., Folgar, L., Williams, J.: Conformal lattice structure design and fabrication. In: SFF Symposium, International Solid Freeform Fabrication Symposium, pp. 138–16 (2012)

  17. Montemurro, M., Catapano, A., Doroszewski, D.: A multi-scale approach for the simultaneous shape and material optimisation of sandwich panels with cellular core. Compos. Part B Eng. 91, 458–472 (2016)

    Article  Google Scholar 

  18. Maxwell, J.C.: On the calculation of the equilibrium and stiffness of frames. Lond. Edinb. Dublin Philos. Mag. J. Sci. 27(182), 294–299 (1864)

    Article  Google Scholar 

  19. Challapalli, A., Ju, J.: Continuum model for effective properties of orthotropic octet-truss lattice materials, In: Volume 9: Mechanics of Solids, Structures and Fluids, ASME (2014)

  20. Ling, C., Cernicchi, A., Gilchrist, M.D., Cardiff, P.: Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading. Mater. Des. 162, 106–118 (2019)

    Article  Google Scholar 

  21. Refai, K., Montemurro, M., Brugger, C., Saintier, N.: Determination of the effective elastic properties of titanium lattice structures. Mech. Adv. Mater. Struct. (2019). https://doi.org/10.1080/15376494.2018.1536816

    Article  Google Scholar 

  22. Catapano, A., Montemurro, M.: A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I: homogenisation of core properties. Compos. Struct. 118, 664–676 (2014)

    Article  Google Scholar 

  23. Catapano, A., Montemurro, M.: A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part II: the optimisation strategy. Compos. Struct. 118, 677–690 (2014)

    Article  Google Scholar 

  24. Azman, A.H.: Method for integration of lattice structures in design for additive manufacturing. Ph.D. Thesis, Université Grenoble Alpes, Laboratoire G-SCOP, Grenoble, France (2017)

  25. Bai, L., Zhang, J., Chen, X., Yi, C., Chen, R., Zhang, Z.: Configuration optimization design of Ti6Al4V lattice structure formed by SLM. Materials 11(10), 1856 (2018)

    Article  Google Scholar 

  26. Chen, W., Zheng, X., Liu, S.: Finite-element-mesh based method for modeling and optimization of lattice structures for additive manufacturing. Materials 11(11), 2073 (2018)

    Article  Google Scholar 

  27. Barbero, E.J.: Finite Element Analysis of Composite Materials using Abaqus (TM). Taylor & Francis Inc., London (2013)

    Book  Google Scholar 

  28. Montemurro, M., Vincenti, A., Vannucci, P.: The automatic dynamic penalisation method (ADP) for handling constraints with genetic algorithms. Comput. Methods Appl. Mech. Eng. 256, 70–87 (2013)

    Article  MathSciNet  Google Scholar 

  29. Montemurro, M.: A contribution to the development of design strategies for the optimisation of lightweight structures. HDR Thesis, Université de Bordeaux, Institut de mécanique et d’ingénierie (I2M), Bordeaux, France (2018)

  30. Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1997)

    Book  Google Scholar 

  31. Montemurro, M., Nasser, H., Koutsawa, Y., Belouettar, S., Vincenti, A., Vannucci, P.: Identification of electromechanical properties of piezoelectric structures through evolutionary optimisation techniques. Int. Solids Struct. 49(13), 1884–1892 (2012)

    Article  Google Scholar 

  32. Cappelli, L., Montemurro, M., Dau, F., Guillaumat, L.: Characterisation of composite elastic properties by means of a multi-scale two-level inverse approach. Compos. Struct. 204, 767–777 (2018)

    Article  Google Scholar 

  33. Jones, R.M.: Mechanics of Composite Materials. Taylor & Francis Inc., London (1998)

    Google Scholar 

  34. Montemurro, M., Catapano, A.: On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates. Compos. Struct. 161, 145–159 (2017)

    Article  Google Scholar 

  35. Montemurro, M., Pagani, A., Fiordilino, G.A., Pailhès, J., Carrera, E.: A general multi-scale two-level optimisation strategy for designing composite stiffened panels. Compos. Struct. 201, 968–979 (2018)

    Article  Google Scholar 

  36. Montemurro, M., Catapano, A.: A general B-spline surfaces theoretical framework for optimisation of variable angle-tow laminates. Compos. Struct. 209, 561–578 (2019)

    Article  Google Scholar 

  37. Montemurro, M., Izzi, M.I., El-Yagoubi, J., Fanteria, D.: Least-weight composite plates with unconventional stacking sequences: design, analysis and experiments. J. Compos. Mater. (2019). https://doi.org/10.1177/0021998318824783

    Article  Google Scholar 

  38. Montemurro, M., Catapano, A.: A new paradigm for the optimum design of variable angle tow laminates. In: Frediani, A., Mohammadi, B., Pironneau, O., Cipolla, V. (eds.) Variational Analysis and Aerospace Engineering: Mathematical Challenges for the Aerospace of the Future. Springer Optimization and Its Applications, vol. 116, 1st edn, pp. 375–400. Springer, Basel (2016). https://doi.org/10.1007/978-3-319-45680-5

    Chapter  Google Scholar 

  39. Costa, G., Montemurro, M., Pailhès, J.: A 2D topology optimisation algorithm in NURBS framework with geometric constraints. Int. J. Mech. Mater. Des. 14(4), 669–696 (2018)

    Article  Google Scholar 

  40. Costa, G., Montemurro, M., Pailhès, J.: NURBS hyper-surfaces for 3D topology optimisation problems. Mech. Adv. Mater. Struct. (2019). https://doi.org/10.1080/15376494.2019.1582826

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Montemurro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertolino, G., Montemurro, M. & De Pasquale, G. Multi-scale shape optimisation of lattice structures: an evolutionary-based approach. Int J Interact Des Manuf 13, 1565–1578 (2019). https://doi.org/10.1007/s12008-019-00580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-019-00580-9

Keywords

Navigation