Skip to main content

Advertisement

Log in

Abstract

The present work proposes a new approach for defining an interactive user manual in complex assemblies, using a new enabling technology of Industry 4.0, i.e. Augmented Reality. The AR environment supports the user in step-by-step assembly on-the-fly. The study of this method, suitable for the assembly of parts, is a stimulating engineering mission, which takes advantage of the latest innovations in imaging technologies and computer graphics. In the present paper, a proposal for an innovative method based on Augmented Reality used to support the components’ assembly is suggested. The methodology is based on a four steps process: (1) the designer performs the assembly structure through a CAD system; (2) an inexperienced user assembles the same parts without any suggestion, and the differences between the two assembly sequences are documented and broken down in order to distinguish critical points in the assembly; (3) a virtual user manual is shaped in an Augmented Reality environment; and (4) the assembly is then performed by the same inexperienced user, guided by the AR tool. When the end-user employs the instrument, the location of the item to assemble is perceived by tracking the finger position of the user itself. In order to help the end-user in the assembly procedure, a series of symbols and texts is added to the external scene. In this paper, a case study based on the assembly of a scale model has been developed to evaluate the methodology. After an evaluation process, the procedure seems to be feasible and presents some advantages over the state-of-the-art methodologies proposed by literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Azuma, R.T.: A survey of augmented reality. Presence Teleoperators Virtual Environ. 6(4), 355–385 (1997)

    Article  Google Scholar 

  2. Adams, R.J., Klowden, D., Hannaford, B.: Virtual training for a manual assembly task. Haptics-e 2(2), 1–7 (2001)

    Google Scholar 

  3. Bajana, J., Francia, D., Liverani, A., Krajčovič, M.: Mobile tracking system and optical tracking integration for mobile mixed reality. Int. J. Comput. Appl. Technol. 53(1), 13–22 (2016)

    Article  Google Scholar 

  4. De Marchi, L., Ceruti, A., Marzani, A., Liverani, A.: Augmented reality to support on-field post-impact maintenance operations on thin structures. J. Sens., Hindawi, Vol. 2013 (2013)

  5. Verlinden, J., Horváth, I., Nam, T.J.: Recording augmented reality experiences to capture design reviews. Int. J. Interact. Des. Manuf. 3, 189–200 (2009)

    Article  Google Scholar 

  6. Chen, C.M., Tsai, Y.N.: Interactive augmented reality system for enhancing library instruction in elementary schools. Comput. Educ. 59, 638–652 (2012)

    Article  Google Scholar 

  7. Tideman, M., van der Voort, M.C., van Houten, F.J.A.M.: A new product design method based on virtual reality, gaming and scenarios. Int. J. Interact. Des. Manuf. (IJIDeM) 2, 195–205 (2008)

    Article  Google Scholar 

  8. De Marchi, L., Ceruti, A., Marzani, A., Liverani, A.: Augmented reality to support on-field post-impact maintenance operations on thin structures. J. Sens., art. n. 619570 (2013)

  9. Fiorentino, M., Uva, A.E., Gattullo, M., Debernardis, S., Monno, G.: Augmented reality on large screen for interactive maintenance instructions. Comput. Ind. 65(2), 270–278 (2014)

    Article  Google Scholar 

  10. Novak-Marcincin, J., Barna, J., Janak, M., Novakova-Marcincinova, L.: Augmented reality aided manufacturing. Proc. Comput. Sci. 25, 23–31 (2013)

    Article  Google Scholar 

  11. Fiorentino, M., De Amicis, R., Stork, A., Monno, G.: Spacedesign: conceptual styling and design review in augmented reality. In: ISMAR 2002 IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 86–94 (2002)

  12. Chardonnet, R., Fromentin, G., Outeiro, J.: Augmented reality as an aid for the use of machine tools. In: 15th Management and Innovative Technologies (MIT) Conference, Sep 2017, Sinaia, Romania. 15th Management and Innovative Technologies (MIT) Conference, pp. 1–4, (2017)

  13. Wang, X., Ong, S.K., Nee, A.Y.C.: A comprehensive survey of augmented reality assembly research. Adv. Manuf. 4(1), 1–22 (2016)

    Article  Google Scholar 

  14. Reinhart, G., Patron, C.: Integrating augmented reality in the assembly domain–Fundamentals, benefits and applications. CIRP Ann. Manuf. Technol. 52, 5–8 (2003)

    Article  Google Scholar 

  15. Baird, K.M., Barfield, W.: Evaluating the effectiveness of augmented reality displays for a manual assembly task. Virtual Real. 4(4), 250–259 (1999)

    Article  Google Scholar 

  16. Caudell, T.P., Mizell, D.W.: Augmented reality: an application of heads-up display technology to manual manufacturing processes. Proc. Twenty-Fifth Hawaii Int. Conf. Syst. Sci. 2, 659–669 (1992)

    Article  Google Scholar 

  17. Reiners, D., Stricker, D., Klinker, G., Müller, S.: Augmented reality for construction tasks: doorlock assembly. Proc. IEEE and ACM IWAR 98(1), 31–46 (1998)

    Google Scholar 

  18. Chen, W.C., Tai, P.H., Deng, W.J., Hsieh, L.F.: A three-stage integrated approach for assembly sequence planning using neural networks. Exp. Syst. Appl. 34, 1777–1786 (2008)

    Article  Google Scholar 

  19. Makris, S., Pintzos, G., Rentzos, L., Chryssolouris, G.: Assembly support using AR technology based on automatic sequence generation. CIRP Ann. Manuf. Technol. 62, 9–12 (2013)

    Article  Google Scholar 

  20. Wang, Z.B., Ng, L.X., Ong, S.K., Nee, A.Y.C.: Assembly planning and evaluation in an augmented reality environment. Int. J. Prod. Res. 51(23–24), 7388–7404 (2013)

    Article  Google Scholar 

  21. Hořejší, P.: Augmented reality system for virtual training of parts assembly. Proc. Eng. 100, 699–706 (2015)

    Article  Google Scholar 

  22. Dalle Mura, M., Dini, G., Failli, F.: An integrated environment based on augmented reality and sensing device for manual assembly workstations. Proc. CIRP 41, 340–345 (2016)

    Article  Google Scholar 

  23. Yuan, M.L., Ong, S.K., Nee, A.Y.C.: Augmented reality for assembly guidance using a virtual interactive tool. Int. J. Prod. Res. 46(7), 1745–1767 (2008)

    Article  MATH  Google Scholar 

  24. Kollatsch, C., Schumann, M., Klimant, P., Wittstock, V., Putz, M.: Mobile augmented reality based monitoring of assembly lines. Proc. CIRP 23, 246–251 (2014)

    Article  Google Scholar 

  25. Pang, Y., Nee, A.Y.C., Ong, S.K., Yuan, M.L.: Assembly feature design in an augmented reality environment. Assem. Autom. J. 26(1), 34–43 (2006)

    Article  Google Scholar 

  26. Kollatsch, C., Schumann, M., Klimant, P., Wittstock, V., Putz, M.: Mobile augmented reality based monitoring of assembly lines. Proc. CIRP 23(C), 246–251 (2014)

    Article  Google Scholar 

  27. Feiner, S., Macintyre, B., Seligmann, D.: Knowledge-based augmented reality. Commun. ACM 36(7), 53–62 (1993)

    Article  Google Scholar 

  28. Zauner, J., Haller, M., Brandl, A., Hartmann, W.: Authoring of a mixed reality assembly instructor for hierarchical structures. In: Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality. (2003)

  29. Nilsson, S., Johansson, B.: Fun and usable: augmented reality instructions in a hospital setting. In: Proceedings of the 19th Australasian conference on Computer-Human Interaction: Entertaining user interfaces, pp. 123–130 (2007)

  30. Webel, S., Bockholt, U., Keil, J.: Design criteria for AR-based training of maintenance and assembly tasks. Lecture Notes in Computer Science, 6773 LNCS (PART 1), pp. 123–132 (2011)

  31. https://www.leapmotion.com (2017). Accessed 24 March 2017

  32. Liverani, A., Leali, F., Pellicciari, M.: Real-time 3D features reconstruction through monocular vision. Int. J. Interact. Des. Manuf. (IJIDeM) 4(2), 103–112 (2010)

    Article  Google Scholar 

  33. Fleet, D.J., Weiss, Y.: Optical Flow Estimation. Mathematical Models in Computer Vision: the Handbook, Chapter 15, pp. 239–258 (2006). ISBN 0-387-26371-3

  34. http://www.tiger-stores.it/ (2017). Accessed 24 March 2017

  35. Liverani, A., Ceruti, A., Caligiana, G.: Tablet-based 3D sketching and curve reverse modelling. Int. J. Comput. Aided Eng. Technol. 5(2–3), 188–215 (2013)

    Article  Google Scholar 

  36. Francia, D., Caligiana, G., Liverani, A., Frizziero, L., Donnici, G.: PrinterCAD: a QFD and TRIZ integrated design solution for large size open moulding manufacturing. Int. J. Interact. Des. Manuf. (IJIDeM) 1, 1–14 (2017). https://doi.org/10.1007/s12008-017-0375-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele De Amicis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Amicis, R., Ceruti, A., Francia, D. et al. Augmented Reality for virtual user manual. Int J Interact Des Manuf 12, 689–697 (2018). https://doi.org/10.1007/s12008-017-0451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-017-0451-7

Keywords

Navigation