Skip to main content
Log in

Experiment and simulation of milling temperature field on hardened steel die with sinusoidal surface

  • Technical Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The distribution characteristics of cutting heat in hardened steel mold surface the milling process have a significant impact on its surface integrity. To meet the structural styles of convex surface, concave surface or both co-exist surface functional required in actual machining, die with characteristic of sinusoidal surface is established. Through the milling experiment, the cutting temperature of different characteristic points on the concave and convex surface and the surface topography feature of the sinusoidal surface are obtained. The temperature change of the sinusoidal surface milling process is simulated by using the three-dimensional modeling software, Matlab and finite element analysis software. According to finite element simulation and experimental results, the range of temperature field of sinusoidal surface milling is similar. In this temperature range, the processing of the mold surface appears “blue brittle” phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Altan, T., Lilly, B., Yen, Y.C., et al.: Manufacturing of dies and molds. CIRP Ann. Manuf. Technol. 50(2), 404–422 (2001)

    Article  Google Scholar 

  2. Krajnik, P., Kopač, J.: Modern machining of die and mold tools. J. Mater. Process. Technol. 157, 543–552 (2004)

    Article  Google Scholar 

  3. Hao, Q., Duan, C.: Surface roughness prediction in high speed milling of 45 steel. J. Harbin Eng. Univ. 36(9), 1229–1233 (2015)

    Google Scholar 

  4. Yan, C.Q., Zhao, J., Li ,Y.E., et al.: Experimental research on surface roughness in high speed milling of complex surface mold steel. In: Materials Science Forum, pp. 123–128 (2009)

  5. Wang, S., Xing, A.I., Zhao, J., et al.: A surface roughness prediction model for high-speed milling. Manuf. Technol. Mach. Tool 8, 65–68 (2006)

    Google Scholar 

  6. Bhopale, N.N., Pawade, R.S.: Investigation of surface integrity in high-speed ball end milling of cantilever shaped thin plate of Inconel 718. J. Achiev. Mater. Manuf. Eng. 55(2), 616–622 (2013)

    Google Scholar 

  7. Özel, T., Altan, T.: Process simulation using finite element method–prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling. Int. J. Mach. Tools Manuf. 40(5), 713–738 (2000)

    Article  Google Scholar 

  8. Hu, Y.J., Wang, Y., Wang, Z.L.: Temperature field numerical analysis of machining process based on the finite element analysis. Key Eng. Mater. 621, 611–616 (2014)

    Article  Google Scholar 

  9. Seshadri, R., Naveen, I., Srinivasan, S., et al.: Finite element simulation of the orthogonal machining process with Al 2024 T351 aerospace alloy. Procedia Eng. 64, 1454–1463 (2013)

    Article  Google Scholar 

  10. Hardy, M.C., Herbert, C.R.J., Kwong, J., et al.: Characterising the integrity of machined surfaces in a powder nickel alloy used in aircraft engines. Procedia Cirp 13, 411–416 (2014)

    Article  Google Scholar 

  11. Quinsat, Y., Sabourin, L., Lartigue, C.: Surface topography in ball end milling process: description of a 3D surface roughness parameter. J. Mater. Process. Technol. 195(1–3), 135–143 (2008)

    Article  Google Scholar 

  12. Axinte, D.A., Dewes, R.C.: Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. J. Mater. Process. Technol. 127(3), 325–335 (2002)

    Article  Google Scholar 

  13. Gao, T., Zhang, W., Qiu, K., et al.: Numerical simulation of machined surface topography and roughness in milling process. J. Manuf. Sci. Eng. 128(1), 96–103 (2006)

    Article  Google Scholar 

  14. Lavernhe, S., Quinsat, Y.: Model for the prediction of 3D surface topography in 5-axis milling. Int. J. Adv. Manuf. Technol. 51(9), 915–924 (2010)

    Article  Google Scholar 

  15. Ezilarasan, C., Kumar, V.S.S., Velayudham, A.: Theoretical predictions and experimental validations on machining the Nimonic C-263 super alloy. Simul. Model. Pract. Theory 40(1), 192–207 (2014)

    Article  Google Scholar 

  16. Zanger, F., Schulze, V.: Investigations on mechanisms of tool wear in machining of Ti-6Al-4V using FEM simulation. Procedia Cirp 8, 158–163 (2013)

    Article  Google Scholar 

  17. Ming, C., Yuan, R., Fan, X., et al.: Application of threedimensional finite elementanalysis in cutting temperaturefor high speed milling. J. Mech. Eng. 38(7), 76–79 (2002)

    Article  Google Scholar 

  18. Toh, C.K.: Surface topography analysis in high speed finish milling inclined hardened steel. Precis. Eng. 28(4), 386–398 (2004)

    Article  Google Scholar 

  19. Wang, P., Zhang, S., Li, Z., et al.: Tool path planning and milling surface simulation for vehicle rear bumper mold. Adv. Mech. Eng. 8(3), 1–10 (2016)

  20. Paris, H., Peigné, G.: Influence of the cutting tool geometrical defects on the dynamic behavior of machining. Int. J. Interact. Des. Manuf. 1(1), 41–49 (2007)

    Article  Google Scholar 

  21. Asad, M., Mabrouki, T., Rigal, J.F.: On the tool vibration effects during down-cut peripheral milling process. Int. J. Interact. Des. Manuf. (IJIDeM) 4(4), 215–225 (2010)

    Article  Google Scholar 

  22. Bin, L.I.: Simulation and experiment on cutting temperature field considering property of materials and friction. J. Mech. Eng. 46(21), 106–111 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the support of the National Natural Science Foundation of China (51205096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Cheng, C., Du, X. et al. Experiment and simulation of milling temperature field on hardened steel die with sinusoidal surface. Int J Interact Des Manuf 12, 345–353 (2018). https://doi.org/10.1007/s12008-017-0386-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-017-0386-z

Keywords

Navigation