Skip to main content
Log in

Geodesic-based manifold learning for parameterization of triangular meshes

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Reverse Engineering (RE) requires representing with free forms (NURBS, Spline, Bézier) a real surface \(S_0\) which has been point-sampled. To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample. We use a dual-distance calculation point to / from surfaces, which discourages the forming of outliers and artifacts. This algorithm seeks a minimum in a function \(f\) that represents the fitting error, by using as tuning variable the control polyhedron for the free form. The topology (rows, columns) and geometry of the control polyhedron are determined by alternative geodesic-based dimensionality reduction methods: (a) graph-approximated geodesics (Isomap), or (b) PL orthogonal geodesic grids. We assume the existence of a triangular mesh of the point sample (a reasonable expectation in current RE). A bijective composition mapping \(S_0 \subset \mathbb {R}^3 \longleftrightarrow \mathbb {R}^2\) allows to estimate a size of the control polyhedrons favorable to uniform-speed parameterizations. Our results show that orthogonal geodesic grids is a direct and intuitive parameterization method, which requires more exploration for irregular triangle meshes. Isomap gives a usable initial parameterization whenever the graph approximation of geodesics on \(S_0\) be faithful. These initial guesses, in turn, produce efficient free form optimization processes with minimal errors. Future work is required in further exploiting the usual triangular mesh underlying the point sample for (a) enhancing the segmentation of the point set into faces, and (b) using a more accurate approximation of the geodesic distances within \(S_0\), which would benefit its dimensionality reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(PL\) :

Piecewise linear

\(B\) :

Solid object in \(\mathbb {R}^3\). \(B \subset \mathbb {R}^3\) is the closure of a bounded and connected open set, whose border \(\partial B\) is a 2-dimensional manifold.

\(S_{0}\) :

Freeform parametric surface on which a Face of \(\partial B\) is mounted

\(\mathbf P \) :

\(\{p_0,p_1,...\}\) Unordered point sample of \(S_{0}\)

\(S(u,v)\) :

Parametric surface, which fits the set \(\mathbf P \),so \(S \approx S_{0}\)

\(u,v\) :

Surface parameters

\(N_{i,p},N_{j,q}\) :

B-spline base functions \(\mathbb {R} \rightarrow \mathbb {R}\),

\(n, m\) :

Number of control points of \(S\) in \(u, v\) directions respectively

\(\mathbf {Cp} \) :

Control polyhedron for \(S\)

\(k\) :

Norm degree. \(|(x_{1},x_{2},...,x_{n})|_{k}=\root k \of {\sum ^{i=n}_{i=1}|x_{i}|^k}\)

\(f\) :

Function minimized when fitting \(S\) to \(\mathbf P \)

\(d_{i}\) :

Minimum distance between the i-th point \(p_{i}\) of \(\mathbf P \) and \(S\)

LM:

Levenberg-Marquardt

RE:

Reverse engineering

\(Gr\) :

Regular, axis-aligned vertex grid in \(\mathbb {R}^2\)

\(G\) :

Graph \((\mathbf P ,E)\) with vertex set \(\mathbf P \) and edge set \(E\), nearly embedded in \(S_{0}\)

\(D\) :

Square matrix in which \(D(i,j)=dist(p_{i},p_{j})\), with dist() approaching the geodesic distance on \(S_{0}\) between sample points \(p_{i}\) and \(p_{j}\)

\(T\) :

\(\{t_1, t_2,\ldots \}\) Triangular mesh of triangles \(t_{i}\) with vertices in \(\mathbf P \)

\(B_{UV}\) :

Parametric rectangular connected subset of \(\mathbb {R}^{2}\)

\(c_{G}\) :

PL geodesic curve on \(T\)

References

  1. Nyquist, H.: Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928)

    Article  Google Scholar 

  2. Shannon, C.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  3. Varady, T., Martin, R., Cox, J.: Reverse engineering of geometric modeling-an introduction. Comput. Aided Des. 29(4), 255–268 (1997)

    Article  Google Scholar 

  4. Cheng, K., Wang, W., Qin, H., Wong, K., Yang, H., Liu, Y.: Design and analysis of optimization methods for subdivision surface fitting. IEEE Trans. Vis. Comput. Graph. 13(5), 878–890 (2007)

    Article  Google Scholar 

  5. Vieira, M., Shimada, K.: Surface mesh segmentation and smooth surface extraction through region growing. Comput. Aided Geom. Des. 22(8), 771–792 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shamir, A.: A survey on mesh segmentation techniques. Comput. Graph. Forum 27(6), 1539–1556 (2008). doi:10.1111/j.1467-8659.2007.01103.x

    Article  MATH  Google Scholar 

  7. Liu, R., Zhang, H.: Mesh segmentation via spectral embedding and contour analysis. In: EuroGraphics, 3 (2007)

  8. Ji, Z., Liu, L., Chen, Z., Wang, G.: Easy mesh cutting. Comput. Graph. Forum 25(3), 283–291 (2006). doi:10.1111/j.1467-8659.2006.00947.x

    Article  Google Scholar 

  9. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.: Mesh scissoring with minima rule and part salience. Comput. Aided Geom. Des. 22(5), 444–465 (2005). doi:10.1016/j.cagd.2005.04.002

    Article  MathSciNet  MATH  Google Scholar 

  10. Orozco, M. et al. : Geometry and topology-based segmentation of 2-manifold triangular meshes in \(r^3\). Master’s thesis, Universidade de Vigo, Spain (2014)

  11. Klein, R., Schilling, A., Straßer, W.: Reconstruction and simplification of surfaces from contours. In: Computer Graphics and Applications, 1999. Proceedings. Seventh Pacific Conference on, pp. 198–207. IEEE (1999)

  12. Ruiz, O., Cadavid, C., Granados, M., Pena, S., Vásquez, E.: 2d shape similarity as a complement for voronoi-delone methods in shape reconstruction. Comput. Graph. 29(1), 81–94 (2005)

    Article  Google Scholar 

  13. Braquelaire, A., Kerautret, B.: Reconstruction of lambertian surfaces by discrete equal height contours and regions propagation. Image Vis. Comput. 23(2), 177–189 (2005)

    Article  Google Scholar 

  14. Piegl, L., Tiller, W.: Parametrization for surface fitting in reverse engineering. Comput. Aided Des. 33(8), 593–603 (2001)

    Article  Google Scholar 

  15. Brujic, D., Ainsworth, I., Ristic, M.: Fast and accurate nurbs fitting for reverse engineering. Int. J. Adv. Manuf. Technol. 54(5), 691–700 (2011)

    Article  Google Scholar 

  16. Zhang, S. et al. : Multi-resolution mesh fitting by b-spline surfaces for reverse engineering. In: Computer-Aided Design and Computer Graphics (CAD/Graphics), 2011 12th International Conference on, pp. 251–257. IEEE (2011)

  17. Louhichi, B., Aifaouli, N., Hamdi, M., BenAmara, A., Francois, V.: An optimization-based computational method for surface fitting to update the geometric information of an existing b-rep cad model. Int. J. CAD/CAM 9(1), 17–24 (2009)

  18. Zhou, K., Synder, J., et al.: Iso-charts: stretch-driven mesh parameterization using spectral analysis. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 45–54. ACM (2004)

  19. Azariadis, P.N.: Parameterization of clouds of unorganized points using dynamic base surfaces. Comput. Aided Des. 36(7), 607–623 (2004). doi:10.1016/S0010-4485(03)00138-6

    Article  Google Scholar 

  20. Kineri, Y., Wang, M., Lin, H., Maekawa, T.: B-spline surface fitting by iterative geometric interpolation/approximation algorithms. Comput. Aided Des. 44(7), 697–708 (2012). doi:10.1016/j.cad.2012.02.011. ISSN 0010-4485

  21. Park, C., Min, C., Kang, M.: Surface reconstruction from scattered point data on octree. J. Korean Soc. Ind. Appl. Math. 16(1), 31–49 (2012). (ISSN / CODEN - 1226–9433 / KSIAM)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruiz, O. et al. : Sensitivity analysis of optimized curve fitting to uniform-noise point samples. In: Proceedings of the 9th International Symposium on Tools and Methods of Competitive Engineering, TMCE 2012. Karlsruhe, Germany (2012)

  23. Xiong, Y., Li, G., Mao, A.: Convergence analysis for B-spline geometric interpolation. Comput. Graph 36(7), 884–891 (2012). doi:10.1016/j.cag.2012.07.002

  24. Leal, N., Leal, E., Branch, J.: Automatic construction of nurbs surfaces from unorganized points. Dyna 78(166), 133–141 (2011). (ISSN 0012–7353)

    Google Scholar 

  25. Galvez, A., Iglesias, A., Puig-Pey, J.: Iterative two-step genetic-algorithm-based method for efficient polynomial b-spline surface reconstruction. Inf. Sci. 182(1), 56–76 (2012). doi:10.1016/j.ins.2010.09.031.ISSN0020-0255

  26. Galvez, A., Iglesias, A.: Particle swarm optimization for non-uniform rational b-spline surface reconstruction from clouds of 3d data points. Inf. Sci. 192, 174–192 (2012). doi:10.1016/j.ins.2010.11.007.ISSN0020-0255

  27. Ren, M., Cheung, C., Kong, L.: A robust surface fitting and reconstruction algorithm for form characterization of ultra-precision freeform surfaces. Measurement 44(10), 2068–2077 (2011). doi:10.1016/j.measurement.2011.08.011

    Article  Google Scholar 

  28. Wang, W., Pottmann, H., Liu, Y.: Fitting b-spline curves to point clouds by curvature-based squared distance minimization. ACM Trans. Grap. 25(2), 214–238 (2006)

    Article  Google Scholar 

  29. Wagner, T. et al.: On the design of optimisers for surface reconstruction. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 2195–2202. ACM (2007)

  30. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quarterly J. Appl. Math. II(2), 164–168 (1944)

  31. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000). doi:10.1126/science.290.5500.2319

    Article  Google Scholar 

  33. Cox, T.F., Cox, M.A.: Multidimensional scaling. In: Monographs on Statistics and Applied Probability, 2nd edn. Chapman and Hall (2001)

  34. Ruiz, O., Arroyave, S., Acosta, D.: Fitting of analytic surfaces to noisy point clouds. Laboratorio de CAD/CAM/CAE, Universidad EAFIT, Medellin, Colombia, Tech. rep. (2013)

Download references

Acknowledgments

The authors wish to thank undergraduate U. EAFIT students Juan Pablo Velasquez for the testing of discrete geodesics MATLAB (TM) code and Daniel Burgos for the end-user segmentation of data sets for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cadavid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta, D.A., Ruiz, O.E., Arroyave, S. et al. Geodesic-based manifold learning for parameterization of triangular meshes. Int J Interact Des Manuf 10, 417–430 (2016). https://doi.org/10.1007/s12008-014-0249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-014-0249-9

Keywords

Navigation