Skip to main content
Log in

Graphene-modified hybrid coating for improving the atomic oxygen erosion resistance of Kapton

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

To improve the atomic oxygen (AO) erosion resistance of Kapton for application as an aerospace material in low earth orbit (LEO), a graphene-modified polysiloxane-60 vol.% SiO2 (G-PSS) composite coating was prepared and tested for AO exposure at a total flux of 1.86 × 1020 atoms/cm2. The prepared coating with a thickness of 5 μm was smooth, with good adhesion and no macroscopic defects. Its AO erosion yield was 9.77 × 10−27–1.25 × 10−26 cm3/atom, which was about three orders and one order of magnitude lower than that of Kapton and polysiloxane-60vol.%SiO2 (PSS) hybrid coating, respectively. The beneficial effect of graphene was attributed to the effective inhibition of gas permeation by the single-layer graphene due to its unique structure and the more stable epoxy groups produced during the reaction of graphene with AO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li, J, Yang, C, Li, N, Yin, J, Feng, Y, Liu, Y, Zhao, H, Li, Y, Zhu, C, Yue, D, Liu, X, “High Performance Polyimide-Based Composites Filled with 2D Aluminum Oxide Coated Reduced Graphene Oxide Nanosheets.” Surf. Coat. Technol., 364 7–15 (2019)

    Article  CAS  Google Scholar 

  2. Wu, ZY, Liu, FL, Yang, SY, Zhang, XZ, Zhang, ZJ, Yang, HX, “Long-Term Atomic Oxygen Resistant Polyimide Films Containing Carborane Nanocage Structure in the Main Chains.” Polym. Degrad. Stab., 210 110280 (2023)

    Article  CAS  Google Scholar 

  3. Xu, M, Zhao, YP, Zhang, XY, Li, ZH, Zhao, L, Wang, ZM, Gao, WS, “Highly Homogeneous Polysiloxane Flexible Coating for Low Earth Orbital Spacecraft with Ultraefficient Atomic Oxygen Resistance and Self-Healing Behavior.” ACS Appl. Polym. Mater., 1 3253–3260 (2019)

    Article  CAS  Google Scholar 

  4. Qi, H, Qian, YH, Xu, JJ, Li, MS, “Studies on Atomic Oxygen Erosion Resistance of Deposited Mg-Alloy Coating on Kapton.” Corr. Sci., 124 56–62 (2017)

    Article  CAS  Google Scholar 

  5. Campos, CH, Urbano, BF, Rivas, BL, “Synthesis and Characterization of Organic-Inorganic Hybrid Composites from Poly(acrylic acid)-[3-(trimethoxysilyl)Propyl Methacrylate]-Al2O3.” Comp. Part B-Eng., 57 1–7 (2014)

    Article  CAS  Google Scholar 

  6. Duo, SW, Li, MS, Zhu, M, Zhou, YC, “Polydimethylsiloxane/Silica Hybrid Coatings Protecting Kapton from Atomic Oxygen Attack.” Mater. Chem. Phys., 112 1093–1098 (2008)

    Article  CAS  Google Scholar 

  7. Banks, BA, Miller, SK, Groh, KK, “Low Earth Orbital Atomic Oxygen Interactions with Materials[G].” NASA Tech. Memo, (2004)

  8. Oh, EO, Chakrabarti, K, Jung, HY, Whang, CM, “Microstructures and Mechanical Properties of Organically Modified Silicate Prepared Under Various Process Conditions.” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 90 60–66 (2002)

    Article  Google Scholar 

  9. Duo, SW, Chang, YC, Liu, TZ, Zhang, H, “Atomic Oxygen Erosion Resistance of Polysiloxane/POSS Hybrid Coatings on Kapton.” In: International Federation for Heat Treatment and Surface Engineering, pp. 337–3423. Elsevier, Amsterdam (2013)

    Google Scholar 

  10. Qi, H, Qian, YH, Xu, JJ, Zuo, J, Li, MS, Zhang, Z, Xie, XB, Shi, QS, “Fabrication of 60 wt% SiO2 Filled Hybrid Nanocomposite and Its Application in Erosion-Corrosion and Radiation Resistance.” Vacuum, 189 110228 (2021)

    Article  CAS  Google Scholar 

  11. Dai, Y, Ni, S, Li, Z, Yang, J, “Diffusion and Desorption of Oxygen Atoms on Graphene.” J. Phys. Condens. Matter, 25 405301 (2013)

    Article  Google Scholar 

  12. Nair, RR, Blake, P, Grigorenko, AN, Novoselov, KS, Booth, TJ, Stauber, T, Peres, NMR, Geim, AK, “Fine Structure Constant Defines Visual Transparency of Graphene.” Science, 320 1308–1308 (2008)

    Article  CAS  Google Scholar 

  13. Liu, W-W, Chai, S-P, Mohamed, AR, Hashim, U, “Synthesis and Characterization of Graphene and Carbon Nanotubes: A Review on the Past and Recent Developments.” J. Ind. Eng. Chem., 20 1171–1185 (2014)

    Article  CAS  Google Scholar 

  14. Ren, S, Cui, M, Li, Q, Li, W, Pu, J, Xue, Q, Wang, L, “Barrier Mechanism of Nitrogen-Doped Graphene Against Atomic Oxygen Irradiation.” Appl. Surf. Sci., 479 669–678 (2019)

    Article  CAS  Google Scholar 

  15. Topsakal, M, Şahin, H, Ciraci, S, “Graphene Coatings: An Efficient Protection from Oxidation.” Phys. Rev. Bhttps://doi.org/10.1103/PhysRevB.85.155445 (2012)

    Article  Google Scholar 

  16. Singh, V, Joung, D, Zhai, L, Das, S, Khondaker, SI, Seal, S, “Graphene Based Materials: Past, Present and Future.” Prog. Mater. Sci., 56 1178–1271 (2011)

    Article  CAS  Google Scholar 

  17. Sun, T, Fabris, S, Baroni, S, “Surface Precursors and Reaction Mechanisms for the Thermal Reduction of Graphene Basal Surfaces Oxidized by Atomic Oxygen.” J. Phys. Chem. C, 115 4730–4737 (2011)

    Article  CAS  Google Scholar 

  18. Fang, B, Chang, D, Xu, Z, Gao, C, “A Review on Graphene Fibers: Expectations Advances, and Prospects.” Adv. Mater., 32 (5) 1902664 (2020)

    Article  CAS  Google Scholar 

  19. Zhang, X, Shen, Z, Zhang, W, Yi, M, Ma, H, Liu, L, Liu, L, Zhao, Y, “Graphene Coating for Enhancing the Atom Oxygen Erosion Resistance of Kapton.” Coatings, 10 (7) 644 (2020)

    Article  Google Scholar 

  20. Nie, J, Liu, D, Li, S, Qiu, Z, Ma, N, Sui, G, “Improved Dispersion of the Graphene and Corrosion Resistance of Waterborne Epoxy–Graphene Composites by Minor Cellulose Nanowhiskers.” J. Appl. Polymer Sci.https://doi.org/10.1002/app.47631 (2019)

    Article  Google Scholar 

  21. Noreen, Z, Khalid, NR, Abbasi, R, Javed, S, Ahmad, I, Bokhari, H, “Visible Light Sensitive Ag/TiO2/Graphene Composite as a Potential Coating Material for Control of Campylobacter Jejuni.” Mater. Sci. Eng. C-Mater. Biolog. Appl., 98 125–133 (2019)

    Article  CAS  Google Scholar 

  22. Chen, Q, Jin, L, Xin, S, Bai, Y, Wang, W, Gao, W, “Polyethylene/Carbon Fiber Composites Reinforced by a Non-Covalent Compatibilization Approach for Flexible Electric Heater and Structural Self-Monitoring.” Appl. Surf. Sci., 601 154207 (2022)

    Article  CAS  Google Scholar 

  23. Gharib, DH, Lock, P, Moulton, SE, Malherbe, F, Langford, SJ, “Molecular Design of Core Substituted Naphthalene Diimides for the Exfoliation of Graphite to Graphene in Chloroform.” Chemnanomat, 5 1303–1310 (2019)

    Article  CAS  Google Scholar 

  24. Duo, SW, Li, MS, Zhang, YM, “A Simulator for Producing of High Flux Atomic Oxygen Beam by Using ECR Plasma Source.” J. Mater. Sci. Technol., 20 759–762 (2004)

    CAS  Google Scholar 

  25. Hu, L, Li, M, Zhou, Y, “Effects of Vacuum Ultraviolet Radiation on Atomic Oxygen Erosion of Polysiloxane/SiO2 Hybrid Coatings.” J. Mater. Sci. Technol., 25 483–488 (2009)

    Google Scholar 

  26. Xiao, F, Wang, K, Zhan, M, “Atomic Oxygen Erosion Resistance of Polyimide/ZrO2 Hybrid Films.” Appl. Surf. Sci., 256 7384–7388 (2010)

    Article  CAS  Google Scholar 

  27. Lee, D, Seo, J, Zhu, X, Cole, JM, Su, HB, “Magnetism in Graphene Oxide Induced by Epoxy Groups.” Appl. Phys. Lett.https://doi.org/10.1063/14919529 (2015)

    Article  Google Scholar 

  28. Dever, JA, Banks, BA, Yan, L, “Effects of Vacuum Ultraviolet Radiation on DC93-500 Silicone.” J. Spacecr. Rock., 43 386–392 (2006)

    Article  CAS  Google Scholar 

  29. Xie, KF, Wang, WJ, Li, Y, Xu, M, Han, ZG, Zhang, YH, Gao, WS, “Study on Structure-Performance Relationship of RGO Enhanced Polypropylene Composites with Improved Atomic Oxygen Resistance.” Compost. Part B-Eng., 239 109970 (2022)

    Article  CAS  Google Scholar 

  30. Peng, D, Qin, W, Wu, X, “Improvement of the Atomic Oxygen Resistance of Carbon Fiber-Reinforced Cyanate Ester Composites Modified by POSS-Graphene-TiO2.” Polym. Degrad. Stab., 133 211–218 (2016)

    Article  CAS  Google Scholar 

  31. Bunch, JS, Verbridge, SS, Alden, JS, van der Zande, AM, Parpia, JM, Craighead, HG, McEuen, PL, “Impermeable Atomic Membranes from Graphene Sheets.” Nano Lett., 8 2458–2462 (2008)

    Article  CAS  Google Scholar 

  32. Ray, SS, Okamoto, M, “Polymer/layered Silicate Nanocomposites: A Review from Preparation to Processing.” Progr. Polym. Sci., 28 1539–1641 (2003)

    Article  CAS  Google Scholar 

  33. Choudalakis, G, Gotsis, AD, “Permeability of Polymer/Clay Nanocomposites: A Review.” Eur. Polym. J., 45 967–984 (2009)

    Article  CAS  Google Scholar 

  34. Vinogradov, NA, Schulte, K, Ng, ML, Mikkelsen, A, Lundgren, E, Mårtensson, N, Preobrajenski, AB, “Impact of Atomic Oxygen on the Structure of Graphene Formed on Ir(111) and Pt(111).” J. Phys. Chem. C, 115 9568–9577 (2011)

    Article  CAS  Google Scholar 

  35. Dikin, DA, Stankovich, S, Zimney, EJ, Piner, RD, Dommett, GHB, Evmenenko, G, Nguyen, ST, Ruoff, RS, “Preparation and Characterization of Graphene Oxide Paper.” Nature, 448 457–460 (2007)

    Article  CAS  Google Scholar 

  36. Wan, S, Chen, Y, Wang, Y, Li, G, Wang, G, Liu, L, Zhang, J, Liu, Y, Xu, Z, Tomsia, AP, Jiang, L, Cheng, Q, “Ultrastrong Graphene Films via Long-Chain π-Bridging.” Matter, 1 389–401 (2019)

    Article  Google Scholar 

  37. Zhang, HJ, Ren, SM, Pu, JB, Xue, QJ, “Barrier Mechanism of Multilayers Graphene Coated Copper Against Atomic Oxygen Irradiation.” Appl. Surf. Sci., 444 28–35 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fund of Science and Technology on Advanced Functional Composites Laboratory (Grant No. 6142906210305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjun Xu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Zhang, Y., He, G. et al. Graphene-modified hybrid coating for improving the atomic oxygen erosion resistance of Kapton. J Coat Technol Res 21, 401–411 (2024). https://doi.org/10.1007/s11998-023-00832-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00832-0

Keywords

Navigation