Skip to main content
Log in

Characterization of synthetic aluminum silicate-coated titanium dioxide photocatalysts as a functional filler

  • Brief Communication
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Synthetic amorphous aluminum silicates-coated titanium dioxides (AS–T nanocomposites) were synthesized by a hydrothermal reaction of aluminum silicate precursors with various chemical compositions and titanium dioxide suspensions. AS–T nanocomposites showed narrow particle size distributions centered between 1.0 and 2.0 μm and their specific surface areas were ranging from 138 to 209 m2/g. Water vapor adsorption isotherms revealed that AS–T nanocomposites with higher Si/Al ratios exhibited high hydrophilicity, as the maximum water adsorption rate reached almost 40 wt%. In methylene blue photocatalytic degradation tests, AS–T nanocomposites with higher Si/Al ratios showed much higher photodegradability than a commercial titanium dioxide, degrading up to 92.7% of methylene blue after 30 min of UV irradiation. A possible mechanism is that a distribution state of Si(Al)–OH and/or Si–OH–Al exposed on the aluminum silicate surface influenced the methylene blue adsorption to the surface, which significantly improved the photodegradation performance. The results of this study indicate that AS–T nanocomposites have the potential to be used as fillers in paints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Redlich, CA, Sparer, J, Cullen, MR, “Sick-Building Syndrome.” Lancet, 349 1013–1016 (1997)

    Article  CAS  Google Scholar 

  2. Burge, PS, “Sick Building Syndrome.” Occup. Environ. Med., 61 185–190 (2004)

    Article  CAS  Google Scholar 

  3. Enea, D, Bellardita, M, Scalisi, P, Alaimo, G, Palmisano, L, “Effects of Weathering on the Performance of Self-cleaning Photocatalytic Paints.” Cem. Concr. Compos., 96 77–86 (2019)

    Article  CAS  Google Scholar 

  4. Galenda, A, Visentin, F, Gerbasi, R, Favaro, M, Bernardi, A, El Habra, N, “Evaluation of Self-cleaning Photocatalytic Paints: Are They Effective Under Actual Indoor Lighting Systems.” Appl. Catal. B Environ., 232 194–204 (2018)

    Article  CAS  Google Scholar 

  5. Baudys, M, Krysa, J, Mills, A, “Smart Inks as Photocatalytic Activity Indicators of Self-cleaning Paints.” Catal. Today, 280 8–13 (2017)

    Article  CAS  Google Scholar 

  6. Xu, F, Wang, T, Chen, HY, Bohling, J, Maurice, AM, Wu, L, Zhou, S, “Preparation of Photocatalytic TiO2-Based Self-cleaning Coatings for Painted Surface Without Interlayer.” Prog. Org. Coat., 113 15–24 (2017)

    Article  CAS  Google Scholar 

  7. Allen, NS, Edge, M, Verran, J, Stratton, J, Maltby, J, Bygott, C, “Photocatalytic Titania Based Surfaces: Environmental Benefits.” Polym. Degrad. Stab., 93 1632–1646 (2008)

    Article  CAS  Google Scholar 

  8. Kasanen, J, Suvanto, M, Tuula Pakkanen, TT, “UV Stability of Polyurethane Binding Agent on Multilayer Photocatalytic TiO2 Coating.” Polym. Test., 30 381–389 (2011)

    Article  CAS  Google Scholar 

  9. Ovenstone, J, “Preparation of Novel Titania Photocatalysts with High Activity.” J. Mater. Sci., 36 1325–1329 (2001)

    Article  CAS  Google Scholar 

  10. Allen, NS, Edge, M, Ortega, A, Liauw, CM, Stratton, J, McIntyre, RB, “Factors Affecting the Interfacial Adsorption of Stabilisers on to Titanium Dioxide Particles (Flow Microcalorimetry, Modelling, Oxidation and FTIR Studies): Nano vs Pigmentary Grades.” Dye. Pigment., 70 192–203 (2006)

    Article  CAS  Google Scholar 

  11. Wada, SI, Wada, K, “Density and Structure of Allophane.” Clay Miner., 12 289–298 (1977)

    Article  CAS  Google Scholar 

  12. Parfitt, RL, Hemni, T, “Structure of Some Allophanes from New Zealand.” Clays Clay Miner., 28 285–294 (1980)

    Article  CAS  Google Scholar 

  13. Johan, E, Matsue, N, Henmi, T, “New Concepts for Change in Charge Characteristics of Allophane with Phosphate Adsorption.” Clay Sci., 10 457–468 (1999)

    CAS  Google Scholar 

  14. Arai, Y, Sparks, DL, Davis, JA, “Arsenate Adsorption Mechanisms at the Allophane–Water Interface.” Environ. Sci. Technol., 39 2537–2544 (2005)

    Article  CAS  Google Scholar 

  15. Henmi, T, Tange, K, Minagawa, T, Yoshinaga, N, “Effect of SiO2/Al2O3 Ratio on the Thermal Reactions of Allophane. II. Infrared and X-ray Powder Diffraction Data.” Clays Clay Miner., 29 124–128 (1981)

    Article  CAS  Google Scholar 

  16. Karube, J, Nakaishi, K, Sugimoto, H, Fujihira, M, “Size and Shape of Allophane Particles in Dispersed Aqueous Systems.” Clays Clay Miner., 44 485–491 (1996)

    Article  CAS  Google Scholar 

  17. Thommes, M, Kaneko, K, Neimark, AV, Olivier, JP, Rodriguez-Reinoso, F, Rouquerol, J, Sing, KSW, “Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report).” Pure Appl. Chem., 87 1051–1069 (2015)

    Article  CAS  Google Scholar 

  18. Sing, KSW, Williams, RT, “Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials.” Adsorpt. Sci. Technol., 22 773–782 (2004)

    Article  CAS  Google Scholar 

  19. Iler, RK, The Chemistry of Silica: Solubility, Polymerization Colloid and Surface Properties and Biochemistry of Silica. Wiley, New York (1979)

    Google Scholar 

  20. Li, G, Lv, L, Fan, H, Ma, J, Li, Y, Wan, Y, Zhao, XS, “Effect of the Agglomeration of TiO2 Nanoparticles on Their Photocatalytic Performance in the Aqueous Phase.” J. Colloid Interface Sci., 348 342–347 (2010)

    Article  CAS  Google Scholar 

  21. Murakami, N, Kawakami, S, Tsubota, T, Ohno, T, “Dependence of Photocatalytic Activity on Particle Size of a Shape-Controlled Anatase Titanium(IV) Oxide Nanocrystal.” J. Mol. Catal. A Chem., 358 106–111 (2012)

    Article  CAS  Google Scholar 

  22. Martra, G, “Lewis Acid and Base Sites at the Surface of Microcrystalline TiO2 Anatase: Relationships Between Surface Morphology and Chemical Behaviour.” Appl. Catal. A Gen., 200 275–285 (2000)

    Article  CAS  Google Scholar 

  23. Katada, N, Suzuki, K, Noda, T, Sastre, G, Niwa, M, “Correlation Between Brønsted Acid Strength and Local Structure in Zeolites.” J. Phys. Chem. C, 113 19208–19217 (2009)

    Article  CAS  Google Scholar 

  24. Cao, W, Wang, A, Yin, H, “Preparation of TiO2@ZrO2@SiO2@MAA Nanocomposites and Impact of Layer Structure on Pigmentary Performance.” Mater. Chem. Phys., 263 124403 (2021)

    Article  CAS  Google Scholar 

  25. Zhang, Y, Yin, H, Wang, A, Liu, C, Yu, L, Jiang, T, Hang, Y, “Evolution of Zirconia Coating Layer on Rutile TiO2 Surface and the Pigmentary Property.” J. Phys. Chem. Solids, 71 1458–1466 (2010)

    Article  CAS  Google Scholar 

  26. Liu, Y, Zhang, Y, Ge, C, Yin, H, Wang, A, Ren, M, Feng, H, Chen, J, Jiang, T, Yu, L, “Evolution Mechanism of Alumina Coating Layer on Rutile TiO2 Powders and the Pigmentary Properties.” Appl. Surf. Sci., 255 7427–7433 (2009)

    Article  CAS  Google Scholar 

  27. Shen, L, Cao, W, Wang, A, Yin, H, “Preparation of TiO2@ZrO2@AlOOH@Polymethyl Acrylic Acid Nanocomposites and the Impact of Layer Structure on Color Scheme, Photocatalytic Activity, and Dispersion Stability.” Ind. Eng. Chem. Res., 59 21811–21821 (2020)

    Article  CAS  Google Scholar 

  28. Koide, S, Nonami, T, “Disinfecting Efficacy of a Plastic Container Covered with Photocatalyst for Postharvest.” Food Control, 18 1–4 (2007)

    Article  CAS  Google Scholar 

  29. Ohashi, F, Arai, K, Shibahara, A, “Effect of Structure-Controlled Aluminum Silicate Nanofiller on Surface Properties of Emulsion Coating Films.” J. Coat. Technol. Res., 19 355–360 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Ohashi.

Ethics declarations

Conflict of interest

The author declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohashi, F. Characterization of synthetic aluminum silicate-coated titanium dioxide photocatalysts as a functional filler. J Coat Technol Res 20, 1789–1794 (2023). https://doi.org/10.1007/s11998-023-00794-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00794-3

Keywords

Navigation