Skip to main content

Advertisement

Log in

Superoleophobic coating based on zinc oxide nanoparticle filled fluoropolymeric nanocomposites

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this study, we have investigated the methods for development of a double layer ZnO-based coating through incorporation of a thin layer of low surface energy coating without any additional treatments. A binary micro-nano structure was observed on the surface topography analysis from the field emission scanning electron microscopy (FESEM) contact angle measurements on the surface, for oil droplet was 85° which is indicative of stable oleophobic properties which might contribute to the low surface energy on the coating and also relate to the surface roughness according to the randomly distributed ZnO particles. We believe that such multifunctional coatings can potentially impose many promising properties for engineering superolephobic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barthlott, W, Neinhuis, C, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces.” Planta, 202 1–8 (1997)

    Article  CAS  Google Scholar 

  2. Quere, D, “Rough Ideas on Wetting.” Physica A, 313 32 (2002)

    Article  CAS  Google Scholar 

  3. Bico, J, Marzolin, C, Quere, D, “Pearl Drops.” Europhys. Lett., 47 220 (1999)

    Article  CAS  Google Scholar 

  4. Sun, TL, Feng, L, Gao, XF, Jiang, L, “Bioinspired Surfaces with Special Wettability.” Acc. Chem. Res., 38 644 (2005)

    Article  CAS  Google Scholar 

  5. Feng, XJ, Jiang, L, “Design and Creation of Superwetting/Antiwetting Surfaces.” Adv. Mater., 18 3063 (2006)

    Article  CAS  Google Scholar 

  6. Ming, W, Wu, D, Benthem, RV, De, G, “Superhydrophobic Films from Raspberry-like Particles.” Nano Lett., 5 2298 (2005)

    Article  CAS  Google Scholar 

  7. Yoshihara, H, Yamamura, M, “Concentration Profiles in Phase-Separating Photocuring Coatings.” J. Coat. Technol. Res., 16 1629–1636 (2019)

    Article  CAS  Google Scholar 

  8. Zhang, G, Zhang, X, Li, M, Su, Z, “A Surface with Superoleophilic-to-Superoleophobic Wettability Gradient.” ACS Appl. Mater. Interfaces, 6 1729–1733 (2014)

    Article  CAS  Google Scholar 

  9. Steele, A, Bayer, I, Loth, E, “Inherently Superoleophobic Nanocomposite Coatings by Spray Atomization.” Nano Lett., 9 501–505 (2009)

    Article  CAS  Google Scholar 

  10. Li, L, Breedveld, V, Hess, DW, “Design and Fabrication of Superamphiphobic Paper Surfaces.” ACS Appl. Mater. Interfaces, 5 5381–5386 (2013)

    Article  CAS  Google Scholar 

  11. Wang, H, Liang, M, Gao, J, et al. “Super-Hydrophobic Coating Prepared by Mechanical Milling Method.” J. Coat. Technol. Res., 19 587–595 (2022)

    Article  CAS  Google Scholar 

  12. Zenerino, A, Darmanin, T, Givenchy, T, Amigoni, S, Guittard, F, “Connector Ability to Design Superhydrophobic and Oleophobic Surfaces from Conducting Polymers.” Langmuir, 26 13545–13549 (2010)

    Article  CAS  Google Scholar 

  13. Huang, Y, Chen, B, Lv, Z, et al. “Facile Fabrication of Durable Superhydrophobic SiO2/Polyacrylate Composite Coatings with Low Nanoparticle Filling.” J. Coat. Technol. Res., 17 1289–1295 (2020)

    Article  CAS  Google Scholar 

  14. Lakshmi, RV, Bharathidasan, T, Bera, P, Basu, BJ, “Fabrication of Superhydrophobic and Oleophobic Sol–Gel Nanocomposite Coating.” Surf. Coat. Technol., 206 3888–3894 (2012)

    Article  CAS  Google Scholar 

  15. Park, J, Urata, C, Masheder, B, Cheng, DF, Hozumi, A, “Long Perfluoroalkyl Chains are not Required for Dynamically Oleophobic Surfaces.” Green Chem., 15 100 (2013)

    Article  CAS  Google Scholar 

  16. Urata, C, Masheder, B, Cheng, DF, Hozumi, A, “Unusual Dynamic Dewetting Behavior of Smooth Perfluorinated Hybrid Films: Potential Advantages Over Conventional Textured and Liquid-Infused Perfluorinated Surfaces.” Langmuir, 29 12472–12482 (2013)

    Article  CAS  Google Scholar 

  17. Honda, K, Morita, M, Otsuka, H, Takahara, A, “Molecular Aggregation Structure and Surface Properties of Poly(fluoroalkyl acrylate) Thin Films.” Macromolecules, 38 5699–5705 (2005)

    Article  CAS  Google Scholar 

  18. Alam, MA, Samad, UA, Sherif, ESM, “Synergistic Effect of Ag and ZnO Nanoparticles on Polyaniline Incorporated Epoxy/2pack Coatings for Splash Zone Applications.” J. Coat. Technol. Res., 16 835–845 (2019)

    Article  CAS  Google Scholar 

  19. Uzoma, PC, Wang, Q, Zhang, W, “Investigation of the Wettability, Anticorrosion, and Accelerated Weathering Behaviors of Siloxane-Modified Acrylic Resin and Functionalized Graphene Nanocomposite Coatings on LY12 Aluminum Alloy.” J. Coat. Technol. Res., 18 789–806 (2021)

    Article  CAS  Google Scholar 

  20. Wu, J, Xie, J, Ling, L, “Surface Modification of Nanosilica with 3-Mercaptopropyl Trimethoxysilane and Investigation of its Effect on the Properties of UV Curable Coatings.” J. Coat. Technol. Res., 10 849–857 (2013)

    Article  CAS  Google Scholar 

  21. Balamurugan, M, Saravanan, S, Soga, T, “Coating of Green-Synthesized Silver Nanoparticles on Cotton Fabric.” J. Coat. Technol. Res., 14 735–745 (2017)

    Article  CAS  Google Scholar 

  22. Kim, JI, Lee, SY, Pyun, JC, “Characterization of Photocatalytic Activity of TiO2 Nanowire Synthesized from Ti-Plate by Wet Corrosion Process.” Curr. Appl. Phys., 9 252 (2009)

    Article  Google Scholar 

  23. Mai, FD, Lee, WLW, Chang, JL, Liu, SC, Wu, CW, Chen, CC, “Fabrication of Porous TiO2 Film on Ti Foil by Hydrothermal Process and its Photocatalytic Efficiency and Mechanisms with Ethyl Violet Dye.” J. Hazard. Mater., 177 864 (2010)

    Article  CAS  Google Scholar 

  24. Kitano, M, Mitsui, R, Eddy, RD, El-Bahy, AMZ, Matsuoka, M, Ueshima, M, Anpo, M, “Synthesis of Nanowire TiO2 Thin Films by Hydrothermal Treatment and their Photoelectrochemical Properties.” Catal. Lett., 119 217 (2007)

    Article  CAS  Google Scholar 

  25. Leung, YH, Djuriši, AB, Gao, J, Xie, MH, Wei, ZF, Xu, SJ, Chan, WK, “Changing the Shape of ZnO Nanostructures by Controlling Zn Vapor Release: from Tetrapod to Bone-like Nanorods.” Chem. Phys. Lett., 385 155 (2004)

    Article  CAS  Google Scholar 

  26. Wang, FZ, Ye, ZZ, Zhu, LP, Zhuge, F, “Novel Morphologies of ZnO Nanotetrapods.” Mater. Lett., 59 560 (2005)

    Article  CAS  Google Scholar 

  27. Wan, Q, Yu, K, Wang, TH, Lin, CL, “Low-Field Electron Emission from Tetrapod-like ZnO Nanostructures Synthesized by Rapid Evaporation.” Appl. Phys. Lett., 83 2253 (2003)

    Article  CAS  Google Scholar 

  28. Li, Q, Wan, Q, Chen, YJ, Wang, TH, Jia, HB, Yu, DP, “Stable Field Emission from Tetrapod-like ZnO Nanostructures.” Appl. Phys. Lett., 85 636 (2004)

    Article  CAS  Google Scholar 

  29. Kong, X, Sun, X, Li, X, Li, Y, “Catalytic Growth of ZnO Nanotubes.” Mater. Chem. Phys., 82 997 (2003)

    Article  CAS  Google Scholar 

  30. Yu, WD, Li, XM, Gao, XD, “Self-Catalytic Synthesis and Photoluminescence of ZnO Nanostructures on ZnO Nanocrystal Substrates.” Appl. Phys. Lett., 84 2658 (2004)

    Article  CAS  Google Scholar 

  31. Yu, WD, Li, XM, Gao, XD, Qiu, PS, Cheng, WX, Ding, AL, “Effect of Zinc Sources on the Morphology of ZnO Nanostructures and their Photoluminescence Properties.” Appl. Phys. A, 79 453–459 (2004)

    Article  CAS  Google Scholar 

  32. Mallakpour, S, Zhiani, M, Barati, A, Rostami, H, “Improving the Direct Methanol Fuel Cell Performance with Poly(vinyl alcohol)/Titanium Dioxide Nanocomposites as a Novel Electrolyte Additive.” Int. J. Hydrogen Energy, 38 12418–12426 (2013)

    Article  CAS  Google Scholar 

  33. Mallakpour, S, Dinari, M, Azadi, E, “Poly(vinyl alcohol) Chains Grafted onto the Surface of Copper Oxide Nanoparticles: Application in Synthesis and Characterization of Novel Optically Active and Thermally Stable Nanocomposites Based on Poly(amide-imide) Containing N-trimellitylimido-L-valine Linkage.” Int. J. Polym. Anal. Charact., 20 82–97 (2015)

    Article  CAS  Google Scholar 

  34. Hui, B, Zhang, Y, Ye, L, “Structure of PVA/Gelatin Hydrogel Beads and Adsorption Mechanism for Advanced Pb (II) Removal.” J. Ind. Eng. Chem., 21 868–876 (2015)

    Article  CAS  Google Scholar 

  35. Peng, L, Zeng, Q, Tie, B, Lei, M, Yang, J, Luo, S, Song, Z, “Manganese Dioxide Nanosheet Suspension: a Novel Absorbent for Cadmium (II) Contamination in Waterbody.” J. Colloid Interface Sci., 456 108–115 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sharif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Sharif, M., Sahami, M. et al. Superoleophobic coating based on zinc oxide nanoparticle filled fluoropolymeric nanocomposites. J Coat Technol Res 19, 1809–1816 (2022). https://doi.org/10.1007/s11998-022-00653-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00653-7

Keywords

Navigation