Skip to main content

Advertisement

Log in

Environment-friendly UV-curable alkyd-based non-isocyanate urethanes

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Two non-isocyanate polyurethanes (NIPUs) were used as reactive diluents for an alkyd to obtain eco-friendly new UV-curable alkyd-polyurethane coatings. A linseed-based alkyd resin was prepared and formulated with the reactive diluents (NIPUs) and free radical photoinitiator, and then UV-cured. NMRs were used to characterize the alkyd and NIPUs and glass transition temperature (Tg) of cured alkyd-polyurethanes were evaluated by using DSC. Further, spectroscopy and thermal stability of the coatings were evaluated by using ATR-IR spectroscopy and thermogravimetric analysis (TGA), respectively. Moreover, coating properties such as pencil hardness, cross-cut adhesion, pull-off adhesion, impact resistance, and reverse impact resistance were also evaluated. It was found that crosslink density, pencil hardness, adhesion, and Tg were dependent and proportional to the amount of the NIPUs (reactive diluents) showing significant improvement in mechanical and thermal properties compared to the linseed-based alkyd resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figure 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cornille, A, Auvergne, R, Figovsky, O, Boutevin, B, Caillol, S, “A Perspective Approach to Sustainable Routes for Non-isocyanate Polyurethanes.” Eur. Polym. J., 87 535–552. https://doi.org/10.1016/j.eurpolymj.2016.11.027 (2017)

    Article  CAS  Google Scholar 

  2. Randall, SLD, The Polyurethanes Book. Wiley (2002)

    Google Scholar 

  3. Wirpsza, TJKZ, Polyurethanes: Chemistry, Technology, and Applications. E. Horwood (1993)

    Google Scholar 

  4. Shen, L, Haufe, J, Patel, MK, Report of Utrecht University Commissioned by European Polysaccharide Network of Excellence and European Bioplastics. Utrecht University (2009)

    Google Scholar 

  5. Bernstein, L, “Isocyanate Induced Pulmonary Diseases: A Current Perspective.” J. Allergy Clin. Immunol., 70 24–31 (1982)

    Article  CAS  Google Scholar 

  6. Merenyi, S, Regulation (EC) No 1907/2006: Consolidated Version (June 2012) with an Introduction and Future Prospects Regarding the Area of Chemicals Legislation. GRIN Verlag (2012)

    Google Scholar 

  7. Chattopadhyay, DK, Raju, KVSN, “Structural Engineering of Polyurethane Coatings for High Performance Applications.” Prog. Polym. Sci., 32 352–418. https://doi.org/10.1016/j.progpolymsci.2006.05.003 (2007)

    Article  CAS  Google Scholar 

  8. Warner, JJ, Wang, P, Mellor, WM, Hwang, HH, Park, JH, Pyo, SH, Chen, S, “3D Printable Non-isocyanate Polyurethanes with Tunable Material Properties.” Polym. Chem., 10 4665–4674. https://doi.org/10.1039/c9py00999j (2019)

    Article  CAS  Google Scholar 

  9. Lockey, JE, Redlich, CA, Streicher, R, Pfahles-Hutchens, A, Hakkinen, PJ, Ellison, GL, Harber, P, Utell, M, Holland, J, Comai, A, White, M, “Isocyanates and Human Health: Multistakeholder Information Needs and Research Priorities.” J. Occup. Environ. Med., 57 44–51. https://doi.org/10.1097/JOM.0000000000000278 (2015)

    Article  CAS  Google Scholar 

  10. Engels, HW, Pirkl, HG, Albers, R, Albach, RW, Krause, J, Hoffmann, A, Casselmann, H, Dormish, J, “Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges.” Angew. Chem. Int. Ed., 52 9422–9441. https://doi.org/10.1002/anie.201302766 (2013)

    Article  CAS  Google Scholar 

  11. Maisonneuve, L, Lamarzelle, O, Rix, E, Grau, E, Cramail, H, “Isocyanate-Free Routes to Polyurethanes and Poly(hydroxy Urethane)s.” Chem. Rev., 115 12407–12439. https://doi.org/10.1021/acs.chemrev.5b00355 (2015)

    Article  CAS  Google Scholar 

  12. Kreye, O, Mutlu, H, Meier, MAR, “Sustainable Routes to Polyurethane Precursors.” Green Chem., 15 1431–1455. https://doi.org/10.1039/c3gc40440d (2013)

    Article  CAS  Google Scholar 

  13. Heederik, D, Henneberger, PK, Redlich, CA, “Primary Prevention: Exposure Reduction, Skin Exposure and Respiratory Protection.” Eur. Respir. Rev., 21 112–124. https://doi.org/10.1183/09059180.00005111 (2012)

    Article  Google Scholar 

  14. Ward, AL, Dori, SE, Li, L, Hughes, MA, Qu, X, Persson, KA, Helms, BA, “Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium-Sulfur Batteries.” ACS Cent. Sci., 3 399–406. https://doi.org/10.1021/acscentsci.7b00012 (2017)

    Article  CAS  Google Scholar 

  15. Godfrey, OO, Ifijen, IH, Mohammed, FU, Aigbodion, AI, Ikhuoria, EU, “Alkyd Resin from Rubber Seed Oil/Linseed Oil Blend: A Comparative Study of the Physiochemical Properties.” Heliyon., 5 4. https://doi.org/10.1016/j.heliyon.2019.e01621 (2019)

    Article  Google Scholar 

  16. Keleş, E, Hazer, B, “Synthesis of Segmented Polyurethane Based on Polymeric Soybean Oil Polyol and Poly (Ethylene Glycol).” J. Polym. Environ., 17 153–158. https://doi.org/10.1007/s10924-009-0132-0 (2009)

    Article  CAS  Google Scholar 

  17. Alam, M, Akram, D, Sharmin, E, Zafar, F, Ahmad, S, “Vegetable Oil Based Eco-friendly Coating Materials: A Review Article.” Arab. J. Chem., 7 469–479. https://doi.org/10.1016/j.arabjc.2013.12.023 (2014)

    Article  CAS  Google Scholar 

  18. Gao, S, Tang, G, Hua, D, Xiong, R, Han, J, Jiang, S, Zhang, Q, Huang, C, “Stimuli-Responsive Bio-based Polymeric Systems and Their Applications.” J. Mater. Chem. B., 7 709–729. https://doi.org/10.1039/c8tb02491j (2019)

    Article  CAS  Google Scholar 

  19. Jones, FN, Nichols, ME, Pappas, SP, Organic Coatings, 4th edn. Wiley (2017)

    Book  Google Scholar 

  20. Babahan-bircan, I, Demirkaya, I, Obaid, S, Hasan, H, Thomas, J, Soucek, MD, “Progress in Organic Coatings Comparison of New Bio-based Epoxide-Amine Coatings with Their Nanocomposite Coating Derivatives (Graphene, CNT, and Fullerene) as Replacements for BPA.” Prog. Org. Coat., 165 106714. https://doi.org/10.1016/j.porgcoat.2022.106714 (2022)

    Article  CAS  Google Scholar 

  21. Zhang, C, Garrison, TF, Madbouly, SA, Kessler, MR, “Recent Advances in Vegetable Oil-Based Polymers and Their Composites.” Prog. Polym. Sci., 71 91–143. https://doi.org/10.1016/j.progpolymsci.2016.12.009 (2017)

    Article  CAS  Google Scholar 

  22. Eromosele, CO, Eromosele, IC, “Fatty Acid Compositions of Seed Oils of Haematostaphis barteri and Ximenia americana.” Bioresour. Technol., 82 303–304. https://doi.org/10.1016/S0960-8524(01)00179-1 (2002)

    Article  CAS  Google Scholar 

  23. Abd El-Ghaffar, MA, Youssef, EA, Abo-Shosa, MM, Ibrahim, NA, Articles Modified Alkyd Resin as Binder for Paints. Pigment & Resin Technology (1996)

    Google Scholar 

  24. Wang, X, Soucek, MD, “Investigation of Non-isocyanate Urethane Dimethacrylate Reactive Diluents for UV-Curable Polyurethane Coatings.” Prog. Org. Coat., 76 1057–1067. https://doi.org/10.1016/j.porgcoat.2013.03.001 (2013)

    Article  CAS  Google Scholar 

  25. Fouassier, JP, Morlet-Savary, F, Lalevée, J, Allonas, X, Ley, C, “Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions.” Materials (Basel)., 3 5130–5142. https://doi.org/10.3390/ma3125130 (2010)

    Article  CAS  Google Scholar 

  26. Salata, RR, Pellegrene, B, Soucek, MD, “Visible Light Cure Packages for Improved Drying Kinetics in Alkyd Coatings.” Prog. Org. Coat., 144 105672. https://doi.org/10.1016/j.porgcoat.2020.105672 (2020)

    Article  CAS  Google Scholar 

  27. Choi, JS, Seo, J, Khan, SB, Jang, ES, Han, H, “Effect of Acrylic Acid on the Physical Properties of UV-Cured Poly(Urethane Acrylate-co-Acrylic Acid) Films for Metal Coating.” Prog. Org. Coat., 71 110–116. https://doi.org/10.1016/j.porgcoat.2011.01.005 (2011)

    Article  CAS  Google Scholar 

  28. Patil, DM, Phalak, GA, Mhaske, ST, “Novel Phosphorus-Containing Epoxy Resin from Renewable Resource for Flame-Retardant Coating Applications.” J. Coat. Technol. Res., 16 531–542. https://doi.org/10.1007/s11998-018-0116-x (2019)

    Article  CAS  Google Scholar 

  29. Thomas, J, Singh, V, Jain, R, “Synthesis and Characterization of Solvent Free Acrylic Copolymer for Polyurethane Coatings.” Prog. Org. Coat., 145 105677. https://doi.org/10.1016/j.porgcoat.2020.105677 (2020)

    Article  CAS  Google Scholar 

  30. Patil, RS, Sancaktar, E, “Fabrication of pH-Responsive Polyimide Polyacrylic Acid Smart Gating Membranes: Ultrafast Method Using 248 nm Krypton Fluoride Excimer Laser.” ACS Appl. Mater. Interfaces, 13 24431–24441. https://doi.org/10.1021/acsami.1c01265 (2021)

    Article  CAS  Google Scholar 

  31. Patil, RS, Sancaktar, E, “Effect of Solution Parameters on pH-Response of Polyacrylic Acid Grafted Polyimide Smart Membrane Fabricated Using 248 nm Krypton Fluoride Excimer Laser.” Polymer, 233 124181. https://doi.org/10.1016/j.polymer.2021.124181 (2021)

    Article  CAS  Google Scholar 

  32. Oyman, ZO, Towards Environmentally Friendly Catalysts For Alkyd Coatings. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR584358 (2005)

    Book  Google Scholar 

  33. Ren, X, Xu, T, Thomas, J, Soucek, MD, “Isoprene Soya Diels-Alder Adduct and Epoxidation for Photopolymerization.” Macromol. Chem. Phys., 222 1–11. https://doi.org/10.1002/macp.202100054 (2021)

    Article  CAS  Google Scholar 

  34. Elba, ME, Abdel Rehim, EM, Ashery, RE, “Synthesis and Characterization of Alkyd Resin Based on Soybean Oil and Glycerin Using Zirconium Octoate as Catalyst.” Int. J. Chem. Technol., 2 34–43. https://doi.org/10.32571/ijct.347670 (2018)

    Article  Google Scholar 

  35. Babahan, I, Zheng, Y, Soucek, MD, “New Bio-based Glycidal Epoxides.” Prog. Org. Coat., 142 105580. https://doi.org/10.1016/j.porgcoat.2020.105580 (2020)

    Article  CAS  Google Scholar 

  36. Mayer, P, Dmitruk, A, Jóskiewicz, M, Głuch, M, “Pull-Off Strength of Fiber-Reinforced Composite Polymer Coatings on Aluminum Substrate.” J. Adhes.,. https://doi.org/10.1080/00218464.2020.1771556 (2020)

    Article  Google Scholar 

  37. Mayer, P, “Impact Test of Aged Polymer Coatings on Steel Substrate.” Interdiscip. J. Eng. Sci., VI (1) 1–9 (2018)

    Google Scholar 

  38. Kurniawan, O, Soegijono, B, “Preparation and Characterization of Polyurethane/ Carbon/Organoclay Composite for Coating of Aluminum Conductor Overhead Lines.” Surf. Sci., 18 62–69 (2020)

    CAS  Google Scholar 

  39. Black, M, Rawlins, JW, “Thiol-Ene UV-Curable Coatings Using Vegetable Oil Macromonomers.” Eur. Polym. J., 45 1433–1441. https://doi.org/10.1016/j.eurpolymj.2009.02.007 (2009)

    Article  CAS  Google Scholar 

  40. Strazisar, S, Kendi, M, Fäcke, T, Hermans-Blackburn, L, Feng, XS, “New High-Throughput Screening Tool for the Evaluation of Pigmented UV-A Curable Coatings: A Case Study Using Low Energy Lamps.” J. Coat. Technol. Res., 3 307–312. https://doi.org/10.1007/s11998-006-0027-0 (2006)

    Article  CAS  Google Scholar 

  41. Soucek, MD, Johnson, AH, Wegner, JM, “Ternary Evaluation of UV-Curable Seed Oil Inorganic/Organic Hybrid Coatings Using Experimental Design.” Prog. Org. Coat., 51 300–311. https://doi.org/10.1016/j.porgcoat.2004.07.019 (2004)

    Article  CAS  Google Scholar 

  42. Ortiz, RA, López, DP, Cisneros, MDLG, Valverde, JCR, Crivello, JV, “A Kinetic Study of the Acceleration Effect of Substituted Benzyl Alcohols on the Cationic Photopolymerization Rate of Epoxidized Natural Oils.” Polymer (Guildf)., 46 1535–1541. https://doi.org/10.1016/j.polymer.2004.12.020 (2005)

    Article  CAS  Google Scholar 

  43. Seniha Güner, F, Yağci, Y, Tuncer Erciyes, A, “Polymers from Triglyceride Oils.” Prog. Polym. Sci., 31 633–670. https://doi.org/10.1016/j.progpolymsci.2006.07.001 (2006)

    Article  CAS  Google Scholar 

  44. Ye, G, Courtecuisse, F, Allonas, X, Ley, C, Croutxe-Barghorn, C, Raja, P, Taylor, P, Bescond, G, “Photoassisted Oxypolymerization of Alkyd Resins: Kinetics and Mechanisms.” Prog. Org. Coat., 73 366–373. https://doi.org/10.1016/j.porgcoat.2011.03.015 (2012)

    Article  CAS  Google Scholar 

  45. Li, Y, Wang, D, Sun, XS, “Epoxidized and Acrylated Epoxidized Camelina Oils for Ultraviolet-Curable Wood Coatings.” J. Am. Oil Chem. Soc., 95 1307–1318. https://doi.org/10.1002/aocs.12123 (2018)

    Article  CAS  Google Scholar 

  46. Haniffa, MACM, Ching, Y-C, Chuah, C-H, Kuan, Y-C, Liu, D-S, Liou, N-S, “Synthesis, Characterization and the Solvent Effects on Interfacial Phenomena of Jatropha Curcas Oil Based Non-Isocyanate Polyurethane.” Polymers, 9 162. https://doi.org/10.3390/polym9050162 (2017)

    Article  CAS  Google Scholar 

  47. Silbert, SD, Serum, EM, LaScala, J, Sibi, MP, Webster, DC, “Biobased, Nonisocyanate, 2K Polyurethane Coatings Produced from Polycarbamate and Dialdehyde Cross-linking.” ACS Sustain. Chem. Eng., 7 19621–21963. https://doi.org/10.1021/acssuschemeng.9b04713 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilknur Babahan-Bircan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babahan-Bircan, I., Thomas, J. & Soucek, M.D. Environment-friendly UV-curable alkyd-based non-isocyanate urethanes. J Coat Technol Res 19, 1507–1522 (2022). https://doi.org/10.1007/s11998-022-00623-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00623-z

Keywords

Navigation