Skip to main content
Log in

Natural polyhydroxy resins in surface coatings: a review

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The depletion of fossil fuels, high environmental pollution due to the release of toxic organic compounds, and high cost are some of the challenges regarding the reliance on petroleum-based resins. Natural polyhydroxy resins (from cashew nutshell liquid, castor oil, tannins, among others) are readily available, eco-friendly, low cost, and biodegradable, and offer enhanced properties when deployed on surface coatings. Accordingly, more attention has been paid to utilizing natural polyhydroxy compounds and bio-based polyurethane resins to replace synthetic resins in the last few decades. This review presents state-of-the-art natural polyhydroxy resins and their application as precursors in surface coatings. Bio-based resins from cashew nutshell liquid (cardanol), castor oil, and tannins employed as precursors in bio-based polyurethane coatings exhibit enhanced/excellent impact strength, adhesion, flexibility, water, and chemical resistance, to mention a few. Moreover, natural resins and eco-friendly polyurethane coatings, including their methods of modification, are also reviewed. This review article helps to promote natural polyhydroxy resins as sustainable and promising green materials for the coatings industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Scheme 4
Fig. 5

Similar content being viewed by others

References

  1. Williams, DC, “The Past and Future History of Natural Resins as Coating Materials in Conservation.” SCCR’s 2nd Resins Conference (1995)

  2. Saba, N, Jawaid, M, Alothman, OY, Paridah, MT, “Recent Advances in Epoxy Resin, Natural Fiber-Reinforced Epoxy Composites and Their Applications.” J. Reinf. Plast. Compos.,. https://doi.org/10.1177/0731684415618459 (2015)

    Article  Google Scholar 

  3. Chen, J, Zhou, Q, Sun, S, “Direct Chemical Characterization of Natural Wood Resins by Temperature-Resolved and Space-Resolved Fourier Transform Infrared Spectroscopy.” J. Mol. Struct., 1115 55–62. https://doi.org/10.1016/j.molstruc.2016.02.079 (2016)

    Article  CAS  Google Scholar 

  4. Class, JB, “Resins, Natural.” Kirk-Othmer Encyclopedia of Chemical Technology. Wiley, 1–12 (2010). https://doi.org/10.1002/0471238961.1805190903120119.a01.pub2

  5. Pagacz, J, Naglik, B, Stach, P, Drzewicz, P, Natkaniec-Nowak, L, “Maturation Process of Natural Resins Recorded in Their Thermal Properties.” J. Mater. Sci.,. https://doi.org/10.1007/s10853-019-04302-0 (2019)

    Article  Google Scholar 

  6. Anderson, KB, “The Nature and Fate of Natural Resins in the Geosphere. XII. Investigation of C-Ring Aromatic Diterpenoids in Raritan Amber by Pyrolysis-GC-Matrix Isolation FTIR-MS.” Geochem. Trans., 7 1–9. https://doi.org/10.1186/1467-4866-7-2 (2006)

    Article  CAS  Google Scholar 

  7. Martín-Ramos, P, Fernández-Coppel, IA, Ruíz-Potosme, NM, Martín-Gil, J, “Potential of ATR-FTIR Spectroscopy for the Classification of Natural Resins.” Biol. Eng. Med. Sci. Rep., 4 (1) 3–6. https://doi.org/10.5530/bems.4.1.2 (2018)

    Article  Google Scholar 

  8. Kyei, SK, Akaranta, O, Darko, G, Chukwu, UJ, “Extraction, Characterization and Application of Cashew Nutshell Liquid from Cashew Nutshells.” Chem. Sci. Int. J., 28 (3) 1–10. https://doi.org/10.9734/csji/2019/v28i330143 (2019)

    Article  CAS  Google Scholar 

  9. Jana, T, Maiti, PS, Dhar, TK, “Development of a Novel Bio-based Hybrid Resin System for Hygienic Coating.” Prog. Org. Coat.,. https://doi.org/10.1016/j.porgcoat.2019.105311 (2019)

    Article  Google Scholar 

  10. Zhang, F, Ju, P, Pan, M, Zhang, D, Huang, Y, Li, G, Li, X, “Self-healing Mechanisms in Smart Protective Coatings: A Review.” Corros. Sci., 144 74–88. https://doi.org/10.1016/j.corsci.2018.08.005 (2018)

    Article  CAS  Google Scholar 

  11. Karak, N, "Biopolymers for Paints and Surface Coatings." In: Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, pp. 333–350. Elsevier Ltd. (2016). https://doi.org/10.1016/B978-0-08-100214-8.00015-4

  12. da Silva, LRR, Avelino, F, Diogenes, OBF, Sales, V, da Silva, KT, Araujo, WS, Mazzetto, SE, Lomonaco, D, “Development of BPA-Free Anticorrosive Epoxy Coatings from Agroindustrial Waste.” Prog. Org. Coat. https://doi.org/10.1016/j.porgcoat.2019.105449 (2020)

    Article  Google Scholar 

  13. Dotan, A, "Thermosets from Renewable Sources." In Handbook of Thermoset Plastics, pp. 577–615. Elsevier Inc. (2014). https://doi.org/10.1016/B978-1-4557-3107-7.00015-4

  14. Chen, G, Guan, X, Xu, R, Tian, J, He, M, Shen, W, Yang, J, “Synthesis and Characterization of UV-Curable Castor Oil-Based Polyfunctional Polyurethane Acrylate via Photo-Click Chemistry and Isocyanate Polyurethane Reaction.” Prog. Org. Coat., 93 11–16. https://doi.org/10.1016/j.porgcoat.2015.12.015 (2016)

    Article  CAS  Google Scholar 

  15. He, X, Zhong, J, Cao, Z, Wang, J, Gao, F, Xu, D, Shen, L, “An Exploration of the Knoevenagel Condensation to Create Ambient Curable Coating Materials Based on Acetoacetylated Castor Oil.” Prog. Org. Coat., 129 21–25. https://doi.org/10.1016/j.porgcoat.2018.12.015 (2019)

    Article  CAS  Google Scholar 

  16. Sahoo, SK, Khandelwal, V, Manik, G, “Development of Completely Bio-based Epoxy Networks Derived from Epoxidized Linseed and Castor Oil Cured with Citric Acid.” Polym. Adv. Technol., 29 (7) 2080–2090. https://doi.org/10.1002/pat.4316 (2018)

    Article  CAS  Google Scholar 

  17. Bellotti, N, Deyá, C, Del Amo, B, Romagnoli, R, “Antifouling Paints with Zinc ‘Tannate.’” Ind. Eng. Chem. Res., 49 (7) 3386–3390. https://doi.org/10.1021/ie9010518 (2010)

    Article  CAS  Google Scholar 

  18. Olajire, AA, “Recent Advances on Organic Coating System Technologies for Corrosion Protection of Offshore Metallic Structures.” J. Mol. Liquids, 269 572–606. https://doi.org/10.1016/j.molliq.2018.08.053 (2018)

    Article  CAS  Google Scholar 

  19. Wagle, PG, Tamboli, SS, More, AP, “Peelable Coatings: A Review.” Prog. Org. Coat.,. https://doi.org/10.1016/j.porgcoat.2020.106005 (2021)

    Article  Google Scholar 

  20. Shirmohammadli, Y, Efhamisisi, D, Pizzi, A, “Tannins as a Sustainable Raw Material for Green Chemistry: A Review.” Ind. Crops Prod., 126 316–332 (2018)

    Article  CAS  Google Scholar 

  21. Ramon, E, Sguazzo, C, Moreira, MGP, “A Review of Recent Research on Bio-based Epoxy Systems for Engineering Applications and Potentialities in the Aviation Sector.” Aerospace, 5 (110) 1–35. https://doi.org/10.3390/aerospace5040110 (2018)

    Article  Google Scholar 

  22. Kyei, SK, Darko, G, Akaranta, O, “Chemistry and Application of Emerging Eco-Friendly Antifouling Paints: A Review.” J. Coat. Technol. Res., 17 (2) 315–332. https://doi.org/10.1007/s11998-019-00294-3 (2020)

    Article  CAS  Google Scholar 

  23. Oldring, PKT, “Coatings, Colorants, and Paints.” In: Encyclopedia of Physical Science and Technology, pp. 175–190. Academic Press (2003)

  24. Murugesan, K, Kumar, GR, Jain, SH, Mohan, S, Nair, SG, “Wood Exudates: An Overview on Aromatic Gums and Resins.” J. Indian Acad. Wood Sci., 8 (12) 72–75. https://doi.org/10.1007/s13196-012-0046-7 (2012)

    Article  Google Scholar 

  25. Barchino-Ortiz, L, Cabeza-Martínez, R, Leis-Dosil, VM, Suárez-Fernández, RM, Lázaro-Ochaita, P, “Allergic Contact Hobby Dermatitis from Turpentine.” Allergol. Immunopathol. (Madr), 36 (2) 117–119. https://doi.org/10.1157/13120411 (2008)

    Article  CAS  Google Scholar 

  26. Pekgözlü, AK, Ceylan, E, “Chemical Composition of Taurus Fir (Abies cilicica subsp. isaurica) Oleoresin.” Rev. Árvore. https://doi.org/10.1590/1806-90882018000100015 (2018)

    Article  Google Scholar 

  27. Dilworth, LL, Riley, CK, Stennett, DK, “Plant Constituents: Carbohydrates, Oils, Resins, Balsams, and Plant Hormones.” In: Pharmacognosy, vol. 1, pp. 61–80. Elsevier Inc. (2017)

  28. Webster, DC, “Paints, Varnishes, and Related Products.” In: Shahidi, F (ed.) Bailey’s Industrial Oil and Fat Products, pp. 1–41, 7th edn. Wiley (2020)

    Google Scholar 

  29. Odozi, TO, Agiri, GO, “Wood Adhesives from Modified Red Onion Skin Tannin Extract.” Agric. Wastes., 17 59–65 (1986)

    Article  CAS  Google Scholar 

  30. Akaranta, O, Aloko, AO, “Bituminous Coating: Effects of Cashew Nutshell Liquid-Tannin Resins.” Pigment Resin Technol., 28 336–340 (1999)

    Article  CAS  Google Scholar 

  31. Wankasi, D, Akaranta, O, “Studies on Cashew (Anacadium) Nutshell Liquid and Resorcinol Modified Peanut Skin Tannin Extract for Wood Adhesives.” Pigment Resin Technol., 31 155–159. https://doi.org/10.1108/03699420210428514 (2002)

    Article  CAS  Google Scholar 

  32. Akaranta, O, “Wood Finishes from Modified Coconut Coir Dust Extract.” Pigment Resin Technol., 25 11–15 (1996)

    Article  CAS  Google Scholar 

  33. Noreen, A, Zia, KM, Zuber, M, Tabasum, S, Zahoor, AF, “Bio-based Polyurethane: An Efficient and Environment Friendly Coating Systems: A Review.” Prog. Org. Coat., 91 25–32. https://doi.org/10.1016/j.porgcoat.2015.11.018 (2016)

    Article  CAS  Google Scholar 

  34. Huo, S, Jin, C, Liu, G, Chen, J, Wu, G, Kong, Z, “Preparation and Properties of Biobased Autocatalytic Polyols and Their Polyurethane Foams.” Polym. Degrad. Stab., 159 62–69. https://doi.org/10.1016/j.polymdegradstab.2018.11.019 (2019)

    Article  CAS  Google Scholar 

  35. Mishra, V, Desai, J, Patel, KI, “(UV/Oxidative) Dual Curing Polyurethane Dispersion from Cardanol Based Polyol: Synthesis and Characterization.” Ind. Crops Prod., 111 165–178. https://doi.org/10.1016/j.indcrop.2017.10.015 (2018)

    Article  CAS  Google Scholar 

  36. Wang, H, Zhou, Q, “Synthesis of Cardanol-based Polyols via Thiol-ene/thiol-epoxy Dual Click-Reactions and Thermosetting Polyurethanes Therefrom.” ACS Sustain. Chem. Eng. https://doi.org/10.1021/acssuschemeng.8b02423 (2018)

    Article  Google Scholar 

  37. Ionescu, M, Wan, X, Bilić, N, Petrović, ZS, “Polyols and Rigid Polyurethane Foams from Cashew Nut Shell Liquid.” J. Polym. Environ., 20 (3) 647–658. https://doi.org/10.1007/s10924-012-0467-9 (2012)

    Article  CAS  Google Scholar 

  38. Voirin, C, Caillol, S, Sadavarte, NV, Tawade, BV, Boutevin, B, Wadgaonkar, PP, “Functionalization of Cardanol: Towards Biobased Polymers and Additives.” Polym. Chem., 5 3142–3162. https://doi.org/10.1039/c3py01194a (2014)

    Article  CAS  Google Scholar 

  39. Kathalewar, M, Sabnis, A, D’Melo, D, “Polyurethane Coatings Prepared from CNSL Based Polyols: Synthesis, Characterization and Properties.” Prog. Org. Coat., 77 (3) 616–626. https://doi.org/10.1016/j.porgcoat.2013.11.028 (2014)

    Article  CAS  Google Scholar 

  40. Ghosh, T, Karak, N, “Cashew Nutshell Liquid Terminated Self-healable Polyurethane as an Effective Anticorrosive Coating with Biodegradable Attribute.” Prog. Org. Coat.,. https://doi.org/10.1016/j.porgcoat.2019.105472 (2020)

    Article  Google Scholar 

  41. Kumar, S, Samal, SS, Mohanty, S, Nayak, SK, “Recent Development of Bio-based Epoxy Resins: A Review.” Polym. Plast. Technol. Eng., 57 (3) 1–104. https://doi.org/10.1080/03602559.2016.12353742 (2017)

    Article  Google Scholar 

  42. Telascrea, M, Leao, A, Cherian, BM, Narine, SS, “Use of a Cashew Nutshell Liquid Resin as a Potential Replacement for Phenolic Resins in the Preparation of Panels: A Review.” Mol. Cryst. Liq. Cryst., 604 (1) 222–232. https://doi.org/10.1080/15421406.2014.968509 (2014)

    Article  CAS  Google Scholar 

  43. Chuayjuljit, S, Rattanametangkool, P, Potiyaraj, P, “Preparation of Cardanol—Formaldehyde Resins from Cashew Nutshell Liquid for the Reinforcement of Natural Rubber.” J. Appl. Polym. Sci., 104 1997–2002. https://doi.org/10.1002/app (2007)

    Article  CAS  Google Scholar 

  44. Noor, A, Mwangi, P, Kareru, P, Thiongo, G, “Physico-Chemical and Performances Characteristics of Cashew Nutshell Liquid as Surface Coatings.” Proceedings of the 26th CAPA International Conference on: “Competency-Based Education and Green Skills for Work and Life in Post-2015 Africa – The Role of TVET.” 12, pp. 70–83 (2015)

  45. Darroman, E, Durand, N, Boutevin, B, Caillol, S, “Improved Cardanol Derived Epoxy Coatings.” Prog. Org. Coat., 91 9–16. https://doi.org/10.1016/j.porgcoat.2015.11.012 (2016)

    Article  CAS  Google Scholar 

  46. Balgude, D, Sabnis, A, Ghosh, SK, “Synthesis and Characterization of Cardanol Based Reactive Polyamide for Epoxy Coating Application".” Prog. Org. Coat. https://doi.org/10.1016/j.porgcoat.2016.11.012 (2016)

    Article  Google Scholar 

  47. Atta, AM, Al-hodan, HA, Abdel, RS, Ezzat, AO, “Preparation of Green Cardanol-Based Epoxy and Hardener as Primer Coatings for Petroleum and Gas Steel in Marine Environment.” Prog. Org. Coat., 111 283–293 (2017)

    Article  CAS  Google Scholar 

  48. Kumar, PR, “Cathodic Electrodeposition of Self-curable Polyepoxide Resins Based on Cardanol.” J. Coat. Technol. Res., 8 (5) 563–575. https://doi.org/10.1007/s11998-011-9337-y (2011)

    Article  CAS  Google Scholar 

  49. Lv, J, Liu, Z, Zhang, J, Huo, J, Yu, Y, “Bio-based Episulfide Composed of Cardanol/Cardol for Anti-corrosion Coating Applications.” Polymer,. https://doi.org/10.1016/j.polymer.2017.06.036 (2017)

    Article  Google Scholar 

  50. Kathalewar, M, Sabnis, A, Dello, D’M, “Isocyanate Free Polyurethanes from New CNSL Based Bis-cyclic Carbonate and Its Application in Coatings.” Eur. Polym. J., 57 99–108. https://doi.org/10.1016/j.eurpolymj.2014.05.008 (2014)

    Article  CAS  Google Scholar 

  51. Kanehashi, S, Yokoyama, K, Masuda, R, Kidesaki, T, Nagai, K, Miyakoshi, T, “Preparation and Characterization of Cardanol-Based Epoxy Resin for Coating at Room Temperature Curing.” J. Appl. Polym. Sci., 130 (4) 2468–2478. https://doi.org/10.1002/app.39382 (2013)

    Article  CAS  Google Scholar 

  52. Shukla, R, Kumar, P, “Self-Curable Epoxide Resins Based on Cardanol for Use in Surface Coatings.” Pigment Resin Technol., 40 (5) 311–333. https://doi.org/10.1108/03699421111176225 (2011)

    Article  CAS  Google Scholar 

  53. Can, E, Wool, RP, Küsefoglu, S, “Soybean and Castor Oil Based Monomers: Synthesis and Copolymerization with Styrene.” J. Appl. Polym. Sci., 102 (3) 2433–2447. https://doi.org/10.1002/app.24548 (2006)

    Article  CAS  Google Scholar 

  54. Harry-O’kuru, RE, Holser, RA, Abbott, TP, Weisleder, D, “Synthesis and Characteristics of Polyhydroxy Triglycerides from Milkweed Oil.” Ind. Crops Prod., 15 51–58 (2002)

    Article  Google Scholar 

  55. Naik, SN, Saxena, DK, Dole, BR, Khare, SK, “Potential and Perspective of Castor Biorefinery,” In: Waste Biorefinery: Potential and Perspectives, pp. 623–656. Elsevier B.V. (2018)

  56. Saboya, RMA, Cecilia, JA, Garcia-Sancho, C, Sales, AV, de Luna, FMT, Rodrihuez-Castellon, E, Cavalcante, CL, “Assessment of Commercial Resins in the Biolubricants Production from Free Fatty Acids of Castor Oil.” Catal. Today, 279 274–285. https://doi.org/10.1016/j.cattod.2016.02.020 (2017)

    Article  CAS  Google Scholar 

  57. Bakhshi, H, Yeganeh, H, Yari, A, Nezhad, SK, “Castor Oil-based Polyurethane Coatings Containing Benzyl Triethanol Ammonium Chloride: Synthesis, Characterization, and Biological Properties.” J. Mater. Sci., 49 (15) 5365–5377. https://doi.org/10.1007/s10853-014-8244-x (2014)

    Article  CAS  Google Scholar 

  58. Richey, B, Burch, M, “Applications for Decorative and Protective Coatings.” Polym. Dispers. Ind. Appl., 7 123–161 (2002)

    Google Scholar 

  59. Yan, L, Shuxia, R, “Architectural Coatings.” In: Building Decorative Materials, pp. 284–324. 1st ed.. Woodhead (2011)

  60. Velthoven, VJLJ, “Bio-Based Polyamide and Poly (Hydroxy urethane) Coating Resins: Synthesis, Characterization and Properties.” Technische Universiteit Eindhoven (2015)

  61. Thakur, S, Karak, N, “Castor Oil-based Hyperbranched Polyurethanes as Advanced Surface Coating Materials.” Prog. Org. Coat., 76 157–164 (2013)

    Article  CAS  Google Scholar 

  62. Bhosale, N, Shaik, A, Mandal, SK, “Synthesis and Characterization of Castor Oil Based Hybrid Polymers and Their Polyurethane-Urea/Silica Coatings.” RSC Adv.,. https://doi.org/10.1039/C5RA20356B (2015)

    Article  Google Scholar 

  63. Paraskar, PM, Prabhudesai, MS, Hatkar, VM, Kulkarni, RD, “Vegetable Oil Based Polyurethane Coatings: A Sustainable Approach: A Review.” Prog. Org. Coat. https://doi.org/10.1016/j.porgcoat.2021.106267 (2021)

    Article  Google Scholar 

  64. Lorwanishpaisarn, N, Kasemsiri, P, Srikhao, N, Jetsrisuparb, K, Knijnenburg, JTN, Hiziroglu, S, Pongsa, U, Chindaprasirt, P, “Fabrication of Durable Superhydrophobic Epoxy/Cashew Nutshell Liquid Based Coating Containing Flower-Like Zinc Oxide for Continuous Oil/Water Separation.” Surf. Coat. Technol., 366 (3) 106–113. https://doi.org/10.1016/j.surfcoat.2019.03.021 (2019)

    Article  CAS  Google Scholar 

  65. Shaik, A, Baidya, K, Nehete, K, Shyamroy, S, “Synthesis and Characterization of Castor Oil-Based Branched Polyols from Renewable Resources and Their Polyurethane-Urea Coatings.” J. Coat. Technol. Res., 16 (2) 387–400. https://doi.org/10.1007/s11998-018-0118-8 (2019)

    Article  CAS  Google Scholar 

  66. Zaimahwati, Y, Jalal, R, Rihayat, T, Zhafiri, S, “Synthesis and Characterization Thermal of Polyurethane/MMT from Castor Oil Polyols for Coating.” IOP Conf. Ser. Mater. Sci. Eng., 536 1. https://doi.org/10.1088/1757-899X/536/1/012037 (2019)

    Article  Google Scholar 

  67. Panda, SS, Panda, BP, Mohanty, S, Nayak, SK, “The Castor Oil Based Water Borne Polyurethane Dispersion; Effect of -NCO/OH Content: Synthesis, Characterization and Properties.” Green Process. Synth., 6 (3) 341–351. https://doi.org/10.1515/gps-2016-0144 (2017)

    Article  CAS  Google Scholar 

  68. Fu, C, Yang, Z, Zheng, V, Shen, L, “Properties of Alkoxysilane Castor Oil Synthesized via Thiol-ene and Its Polyurethane/Siloxane Hybrid Coating Films.” Prog. Org. Coat., 77 (8) 1241–1248. https://doi.org/10.1016/j.porgcoat.2014.03.020 (2014)

    Article  CAS  Google Scholar 

  69. Li, K, Shen, Y, Fei, G, Wang, H, Li, J, “Preparation and Properties of Castor Oil/Pentaerythritol Triacrylate-Based UV Curable Waterborne Polyurethane Acrylate.” Prog. Org. Coat.,. https://doi.org/10.1016/j.porgcoat.2014.09.012 (2014)

    Article  Google Scholar 

  70. Zhang, C, Madbouly, SA, Kessler, MR, “Biobased Polyurethanes Prepared from Different Vegetable Oils.” Appl. Mater. Interfaces, 7 1226–1233. https://doi.org/10.1021/am5071333 (2015)

    Article  CAS  Google Scholar 

  71. Chang, C, Lu, K, “Natural Castor Oil based 2-Package Waterborne Polyurethane Wood Coatings.” Prog. Org. Coat., 75 435–443 (2012)

    Article  CAS  Google Scholar 

  72. Yi, Z, Wang, W, Zhang, W, Li, J, “Preparation of Tannin-Formaldehyde-Furfural Resin with Pretreatment of Depolymerization of Condensed Tannin and Ring Opening of Furfural.” J. Adhes. Sci. Technol., 30 (9) 947–959. https://doi.org/10.1080/01694243.2015.1132576 (2016)

    Article  CAS  Google Scholar 

  73. Tondi, G, “Tannin-Based Copolymer Resins: Synthesis and Characterization by Solid State 13C NMR and FT-IR Spectroscopy.” Polymers. https://doi.org/10.3390/polym9060223 (2017)

    Article  Google Scholar 

  74. Zhang, X, Do, MD, “Plasticization and Crosslinking Effects of Acetone-Formaldehyde and Tannin Resins on Wheat Protein-Based Natural Polymers.” Carbohydr. Res., 344 1180–1189. https://doi.org/10.1016/j.carres.2009.03.028 (2009)

    Article  CAS  Google Scholar 

  75. Grigsby, W, Steward, D, “Applying the Protective Role of Condensed Tannins to Acrylic-Based Surface Coatings Exposed to Accelerated Weathering.” J. Polym. Environ., 26 (3) 895–905. https://doi.org/10.1007/s10924-017-0999-0 (2018)

    Article  CAS  Google Scholar 

  76. Da Silveira, MR, Peres, RS, Moritz, VF, Ferreira, CA, “Intumescent Coatings Based on Tannins for Fire Protection.” Mater. Res. https://doi.org/10.1590/1980-5373-MR-2018-0433 (2019)

    Article  Google Scholar 

  77. Peres, RS, Armelin, E, Alemán, C, Ferreira, CA, “Modified Tannin Extracted from Black Wattle Tree as an Environmentally Friendly Antifouling Pigment.” Ind. Crops Prod., 65 506–514. https://doi.org/10.1016/j.indcrop.2014.10.033 (2015)

    Article  CAS  Google Scholar 

  78. Nardeli, JV, Fugivara, CS, Taryba, M, Pinto, ERP, Montemor, MF, Benedetti, AV, “Tannin: A Natural Corrosion Inhibitor for Aluminum Alloys.” Prog. Org. Coat., 135 (5) 368–381. https://doi.org/10.1016/j.porgcoat.2019.05.035 (2019)

    Article  CAS  Google Scholar 

  79. Hasan, AF, Nasir, M, Ibrahim, M, Rahim, A, “Preparation and Characterization of Green Adhesives Using Modified Tannin and Hyperbranched Poly (Amine-Ester).” Int. J. Adhes. Adhes., 71 39–47. https://doi.org/10.1016/j.ijadhadh.2016.08.009 (2016)

    Article  CAS  Google Scholar 

  80. Ramires, EC, Frollini, E, “Tannin-Phenolic Resins: Synthesis, Characterization, and Application as Matrix in Biobased Composites Reinforced with Sisal Fibers.” Compos. Part B Eng., 43 (7) 2851–2860. https://doi.org/10.1016/j.compositesb.2012.04.049 (2012)

    Article  CAS  Google Scholar 

  81. Frollini, E, Silva, CG, Ramires, EC, “Phenolic Resins as a Matrix Material in Advanced Fiber-Reinforced Polymer (FRP) Composites.” In: Advanced Fibre-Reinforced polymer (FRP) Composites for Structural Applications, pp. 7–43. Woodhead Publishing Limited (2013)

  82. Das, AK, Islam, MN, Faruk, MO, Ashaduzzaman, M, Dungani, R, “Review on Tannins: Extraction Processes, Applications and Possibilities.” South African J. Bot., 135 58–70. https://doi.org/10.1016/j.sajb.2020.08.008 (2020)

    Article  CAS  Google Scholar 

  83. Moubarik, A, Pizzi, A, Allal, A, Charrier, F, Khoukh, A, Charrier, B, “Cornstarch-Mimosa Tannin-Urea Formaldehyde Resins as Adhesives in the Particleboard Production.” Starch/Staerke, 62 (3–4) 131–138. https://doi.org/10.1002/star.200900228 (2010)

    Article  CAS  Google Scholar 

  84. Hafiz, NLM, Tahir, PMD, Hua, LS, Abidin, ZZ, Sabaruddin, FA, Yunus, NM, Abdullah, UH, Abdul Khalil, HPS, “Curing and Thermal Properties of Co-polymerized Tannin Phenol-formaldehyde Resin for Bonding Wood Veneers.” J. Mater. Res. Technol., 9 (4) 6994–7001. https://doi.org/10.1016/j.jmrt.2020.05.029 (2020)

    Article  CAS  Google Scholar 

  85. Kim, S, “Environment-Friendly Adhesives for Surface Bonding of Wood-Based Flooring Using Natural Tannin to Reduce Formaldehyde and TVOC Emission.” Bioresour. Technol., 100 (2) 744–748. https://doi.org/10.1016/j.biortech.2008.06.062 (2009)

    Article  CAS  Google Scholar 

  86. Tahir, PM, Halip, JA, Lee, SH, “Tannin-Based Bioresin as Adhesives.” Lignocellul. Futur. Bioeconomy,. https://doi.org/10.1016/B978-0-12-816354-2.00007-4 (2019)

    Article  Google Scholar 

  87. Byrne, C, D’Alessandro, O, Selmi, GJ, Romagnoli, R, Deyá, C, “Primers Based on Tara and Quebracho Tannins for Poorly Prepared Steel Surfaces.” Prog. Org. Coat., 130 (10) 244–250. https://doi.org/10.1016/j.porgcoat.2019.02.003 (2019)

    Article  CAS  Google Scholar 

  88. Grigsby, WJ, “Simulating the Protective Role of Bark Proanthocyanidins in Surface Coatings: Unexpected Beneficial Photo-Stabilisation of Exposed Timber Surfaces.” Prog. Org. Coat., 110 55–61. https://doi.org/10.1016/j.porgcoat.2017.03.007 (2017)

    Article  CAS  Google Scholar 

  89. Amirou, S, Pizzi, A, “Biosourced Heat Resistant Coatings by Cross-Linking of Proteins with Triethyl Phosphate.” Prog. Org. Coat.,. https://doi.org/10.1016/j.porgcoat.2019.105403 (2020)

    Article  Google Scholar 

  90. Jaramillo, AF, Montaya, LF, Prabhakar, JM, Sanhueza, JP, Fernandez, K, Rohwerder, M, Rojas, D, Montalba, C, Melendrez, MF, “Formulation of a Multifunctional Coating Based on Polyphenols Extracted from the Pine Radiata Bark and Functionalized Zinc Oxide Nanoparticles: Evaluation of Hydrophobic and Anticorrosive Properties.” Prog. Org. Coat., 135 (6) 191–204. https://doi.org/10.1016/j.porgcoat.2019.06.011 (2019)

    Article  CAS  Google Scholar 

  91. Chang, J, Wang, Z, Han, E, Liang, X, Wang, G, Yi, Z, Li, N, “Corrosion Resistance of Tannic Acid, D-Limonene and Nano-ZrO2 Modified Epoxy Coatings in Acid Corrosion Environments.” J. Mater. Sci. Technol., 65 137–150. https://doi.org/10.1016/j.jmst.2020.03.081 (2021)

    Article  CAS  Google Scholar 

  92. Milošević, M, Danicic, D, Kovacina, J, Bugarcic, M, Rusmirovic, J, Kovacevic, T, Marinkovic, A, “Modified Tannins for Alkyd Based Anticorrosive Coatings.” Zast. Mater., 60 (1) 81–95. https://doi.org/10.5937/zasmat1901081m (2019)

    Article  Google Scholar 

  93. Montoya, LF, Contreras, D, Jaramillo, AF, Carrasco, C, Fernández, K, Schwederski, B, “Study of Anticorrosive Coatings Based on High and Low Molecular Weight Polyphenols Extracted from the Pine Radiata Bark.” Prog. Org. Coat., 127 100–109. https://doi.org/10.1016/j.porgcoat.2018.11.010 (2019)

    Article  CAS  Google Scholar 

  94. Bellotti, N, Amo, B, Romagnoli, R, “Tara Tannin a Natural Product with Antifouling Coating Application.” Prog. Org. Coat., 74 411–417. https://doi.org/10.1016/j.porgcoat.2011.11.014 (2012)

    Article  CAS  Google Scholar 

  95. Asemani, HR, Mannari, V, “Synthesis and Evaluation of Non-isocyanate Polyurethane Polyols for Heat-Cured Thermoset Coatings.” Prog. Org. Coat., 131 247–258. https://doi.org/10.1016/j.porgcoat.2019.02.036 (2019)

    Article  CAS  Google Scholar 

  96. Ping, LYU, Kaiyuan, CHE, Mingliang, MA, Xiaofei, J, Weibo, H, “Advance in Research on Modification of Polyurethane Coating.” 2018 IEEE Int. Conf. Adv. Manuf., 11, pp. 354–358 (2018). https://doi.org/10.1109/AMCON.2018.8614902.

  97. Salanti, A, Zoia, L, Mauri, M, Orlandi, M, “Utilization of Cyclocarbonated Lignin as a Bio-based Cross-Linker for the Preparation of Poly (Hydroxyurethanes).” RSC Adv., 7 25054–25065. https://doi.org/10.1039/C7RA03416D (2017)

    Article  CAS  Google Scholar 

  98. Avar, G, Meier-Westhues, U, Casselmann, H, Achten, D, “Polyurethanes.” Polym. Sci: A Comp. Ref., 10 411–441 (2012)

    Google Scholar 

  99. Ionescu, M, Radojčić, D, Wan, X, Shrestha, ML, Petrović, ZS, Upshaw, TA, “Highly Functional Polyols from Castor Oil for Rigid Polyurethanes.” Eur. Polym. J., 84 736–749. https://doi.org/10.1016/j.eurpolymj.2016.06.006 (2016)

    Article  CAS  Google Scholar 

  100. Wazarkar, K, Kathalewar, M, Sabnis, A, “Development of Epoxy-urethane Hybrid Coatings via Non-isocyanate Route.” Eur. Polym. J. https://doi.org/10.1016/j.eurpolymj.2016.10.021 (2016)

    Article  Google Scholar 

  101. Licari, JJ, “Applications,” In: Coating Materials for Electronic Applications, pp. 279–386. Elsevier Inc. (2003)

  102. Janik, H, Sienkiewicz, M, Kucinska-lipka, J, “Polyurethanes,” In Handbook of Thermoset Plastics, 3rd ed., pp. 253–295 (2014)

  103. Liu, G, Wu, G, Jin, C, Kong, Z, “Preparation and Antimicrobial Activity of Terpene-Based Polyurethane Coatings with Carbamate Group-Containing Quaternary Ammonium Salts.” Prog. Org. Coat., 80 150–155. https://doi.org/10.1016/j.porgcoat.2014.12.005 (2015)

    Article  CAS  Google Scholar 

  104. Li, Y, Noordover, BAJ, Van Benthem, RATM, Koning, CE, “Chain Extension of Dimer Fatty Acid- and Sugar-Based Polyurethanes in Aqueous Dispersions.” Eur. Polym. J., 52 12–22. https://doi.org/10.1016/j.eurpolymj.2013.12.007 (2014)

    Article  CAS  Google Scholar 

  105. Tang, K, Zhang, A, Ge, T, Liu, X, Tang, X, Li, Y, Research Progress on Modification of Phenolic Resin. Elsevier Ltd. (2020)

    Google Scholar 

  106. Hayes, DG, Dumont, MJ, “Polymeric Products Derived from Industrial Oils for Paints, Coatings, and Other Applications.” In: Industrial Oil Crops, pp. 43–73. AOCS Press (2016)

  107. Abraham, TW, Höfer, R, Lipid-Based Polymer Building Blocks and Polymers, vol 10. Elsevier (2012)

    Google Scholar 

  108. De, B, Gupta, K, Mandal, M, Karak, N, “Biodegradable Hyperbranched Epoxy from Castor Oil-Based Hyperbranched Polyester Polyol.” ACS Sustain. Chem. Eng., 2 445–453 (2014)

    Article  CAS  Google Scholar 

  109. Mustapha, R, Rahmat, AR, Majid, RA, Noor, S, Mustapha, H, “Vegetable Oil-Based Epoxy Resins and Their Composites with Bio-based Hardener: A Short Review.” Polym. Technol. Mater.,. https://doi.org/10.1080/25740881.2018.1563119 (2019)

    Article  Google Scholar 

  110. Bentley, J, Paint and Surface Coatings: Theory and Practice, 2nd edn. Woodhead Publishing Limited, Cambridge (1999)

    Google Scholar 

  111. Mahajan, MS, Mahulikar, PP, Gite, VV, “Eugenol Based Renewable Polyols for Development of 2K Anticorrosive Polyurethane Coatings.” Prog. Org. Coat.,. https://doi.org/10.1016/j.porgcoat.2020.105826 (2020)

    Article  Google Scholar 

  112. Otts, DB, Pereira, KJ, Jarret, WL, Urban, MW, “Dynamic Colloidal Processes in Waterborne Two-Component Polyurethanes and Their Effects on Solution and Film Morphology.” Polymer (Guildf), 46 (13) 4776–4788. https://doi.org/10.1016/j.polymer.2005.04.009 (2005)

    Article  CAS  Google Scholar 

  113. Wicks, ZW, Wicks, DA, Rosthauser, JW, “Two Package Waterborne Urethane Systems.” Prog. Org. Coat., 44 (2) 161–183. https://doi.org/10.1016/S0300-9440(02)00002-4 (2002)

    Article  CAS  Google Scholar 

  114. Li, S, Liu, Z, Hou, L, Chen, Y, Xu, T, “Effect of Polyether/Polyester Polyol Ratio on Properties of Waterborne Two-component Polyurethane Coatings.” Prog. Org. Coat., 141 30. https://doi.org/10.1016/j.porgcoat.2020.105545 (2020)

    Article  CAS  Google Scholar 

  115. Wu, G, Kong, Z, Chen, J, Huo, S, Liu, G, “Preparation and Properties of Waterborne Polyurethane/Epoxy Resin Composite Coating from Anionic Terpene-Based Polyol Dispersion.” Prog. Org. Coat., 77 (2) 315–321. https://doi.org/10.1016/j.porgcoat.2013.10.005 (2014)

    Article  CAS  Google Scholar 

  116. Wan, T, Chen, D, “Synthesis and Properties of Self-healing Waterborne Polyurethanes Containing Disulfide Bonds in the Main Chain.” J. Mater. Sci., 52 (1) 197–207. https://doi.org/10.1007/s10853-016-0321-x (2017)

    Article  CAS  Google Scholar 

  117. Yang, C, Liu, F, Liu, Y, Liao, W, “Hybrids of Colloidal Silica and Waterborne Polyurethane.” J. Colloid Interface Sci., 302 123–132. https://doi.org/10.1016/j.jcis.2006.06.001 (2006)

    Article  CAS  Google Scholar 

  118. Pathak, SS, Sharma, A, Khanna, AS, “Value Addition to Waterborne Polyurethane Resin by Silicone Modification for Developing High Performance Coating on Aluminum Alloy.” Prog. Org. Coat., 65 206–216. https://doi.org/10.1016/j.porgcoat.2008.11.005 (2009)

    Article  CAS  Google Scholar 

  119. Jeon, HT, Jang, MK, Kim, BK, Kim, KH, “Synthesis and Characterizations of Waterborne Polyurethane-Silica Hybrids Using Sol-Gel Process.” Colloids Surf. A Physicochem. Eng. Asp., 302 559–567. https://doi.org/10.1016/j.colsurfa.2007.03.043 (2007)

    Article  CAS  Google Scholar 

  120. Patel, RH, Shah, MD, Patel, HB, “Synthesis and Characterization of Structurally Modified Polyurethanes Based on Castor Oil and Phosphorus-Containing Polyol for Flame-Retardant Coatings.” Int. J. Polym. Anal. Char., 16 (2) 107–117. https://doi.org/10.1080/1023666X.2011.541108 (2011)

    Article  CAS  Google Scholar 

  121. Panda, SS, Panda, BP, Nayak, SK, Mohanty, S, “A Review on Waterborne Thermosetting Polyurethane Coatings Based on Castor Oil: Synthesis, Characterization, and Application.” Polym. Plast. Technol. Eng., 57 (6) 500–522. https://doi.org/10.1080/03602559.2016.1275681 (2018)

    Article  CAS  Google Scholar 

  122. Mannari, VM, Michigan, E, “Two-Component High-Solid Polyurethane Coating Systems Based on Soy Polyols.” JCT Res., 3 (2) 151–157 (2006)

    CAS  Google Scholar 

  123. Bin, L, Song-mei, L, Jian-hua, L, Mei, Y, “The Heat Resistance of a Polyurethane Coating Filled with Modified Nano-CaCO3.” Appl. Surf. Sci., 315 241–246. https://doi.org/10.1016/j.apsusc.2014.07.022 (2014)

    Article  CAS  Google Scholar 

  124. Narute, P, Palanisamy, A, “Study of the Performance of Polyurethane Coatings Derived from Cottonseed Oil Polyol.” J. Coat. Technol. Res.,. https://doi.org/10.1007/s11998-015-9741-9 (2015)

    Article  Google Scholar 

  125. Tong, Y, Bohm, S, Song, M, “The Capability of Graphene on Improving the Electrical Conductivity and Anti-corrosion Properties of Polyurethane Coatings.” Appl. Surf. Sci., 424 72–81. https://doi.org/10.1016/j.apsusc.2017.02.081 (2017)

    Article  CAS  Google Scholar 

  126. Pilch-Pitera, B, Byczynski, L, Mysliwiec, B, “Study on the Synthesis of New Blocked Polyisocyanates as Crosslinking Agents for Hydrophobic Polyurethane Powder Clear Coatings.” Prog. Org. Coat., 113 82–89. https://doi.org/10.1016/j.porgcoat.2017.08.011 (2017)

    Article  CAS  Google Scholar 

  127. Xing, T, Ying, L, Wu, C, Fu, Z, Wang, G, “Study on the Effect of Surface Tannic Acid/silane Conversion Film on Properties of Epoxy Resin Coatings.” Anti-Corros. Methods Mater., 66 (4) 446–453. https://doi.org/10.1108/ACMM-08-2018-1988 (2019)

    Article  CAS  Google Scholar 

  128. Shirke, AG, Dholakiya, BZ, Kuperkar, K, “Enhancement of Physico-Chemical and Anti-Corrosive Properties of Tung Oil Based Polyurethane Coating via Modification Using Anhydrides and Inorganic Acid.” Surf. Interfaces, 15 (1) 180–190. https://doi.org/10.1016/j.surfin.2019.01.015 (2019)

    Article  CAS  Google Scholar 

  129. Feng, M, Li, W, Liu, X, Huang, M, Yang, J, “Copper-Polydopamine Composite Coating Decorating UHMWPE Fibers for Enhancing the Strength and Toughness of Rigid Polyurethane Composites.” Polym. Test., 93 106883. https://doi.org/10.1016/j.polymertesting.2020.106883 (2021)

    Article  CAS  Google Scholar 

  130. Fridrihsone, A, Romagnoli, F, Kirsanovs, V, Cabulis, U, “Life Cycle Assessment of Vegetable Oil Based Polyols for Polyurethane Production.” J. Clean. Prod.,. https://doi.org/10.1016/j.jclepro.2020.121403 (2020)

    Article  Google Scholar 

  131. Garcia Gonzalez, MN, Levi, M, Turri, S, “Development of Polyester Binders for the Production of Sustainable Polyurethane Coatings: Technological Characterization and Life Cycle Assessment.” J. Clean. Prod., 164 171–178. https://doi.org/10.1016/j.jclepro.2017.06.190 (2017)

    Article  CAS  Google Scholar 

  132. García González, MN, Börjesson, P, Levi, M, Turri, S, “Development and Life Cycle Assessment of Polyester Binders Containing 2,5-Furandicarboxylic Acid and Their Polyurethane Coatings.” J. Polym. Environ., 26 (9) 3626–3637. https://doi.org/10.1007/s10924-018-1234-3 (2018)

    Article  CAS  Google Scholar 

  133. Cok, B, Tsiropoulos, I, Roes, AL, Patel, MK, “Succinic Acid Production Derived from Carbohydrates: An Energy and Greenhouse Gas Assessment of a Platform Chemical Toward a Bio-based Economy.” Biofuels Bioprod. Biorefin., 8 16–29. https://doi.org/10.1002/bbb (2014)

    Article  CAS  Google Scholar 

  134. Häkkinen, T, Ahola, P, Vanhatalo, L, Merra, A, Environmental Impact of Coated Exterior Wooden Cladding (1999).

  135. Gustafsson, LM, Börjesson, P, “Life Cycle Assessment in Green Chemistry.” Int. J. Life Cycle Anal., 12 (3) 151–159. https://doi.org/10.1065/lca2006.11.280 (2007)

    Article  CAS  Google Scholar 

  136. Montazeri, M, Eckelman, MJ, “Life Cycle Assessment of UV-Curable Bio-based Wood Flooring Coatings.” J. Clean. Prod., 192 932–939. https://doi.org/10.1016/j.jclepro.2018.04.209 (2018)

    Article  CAS  Google Scholar 

  137. Lemesle, C, Duquesne, S, Schuller, A, Jimenez, M, “Life Cycle Assessment of Multi-step Versus One-step Coating Processes Using Oil or Bio-Based Resins.” J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2019.118527 (2020)

    Article  Google Scholar 

  138. Koncar, V, "Composites and Hybrid Structures." In: Smart Textiles for In Situ Monitoring of Composites, pp. 153–215 (2019). https://doi.org/10.1016/b978-0-08-102308-2.00002-4.

  139. Kuhn, LT, "Biomaterials". In: Introduction to Biomedical Engineering, pp. 219–271. Elsevier Inc. (2011). https://doi.org/10.1016/B978-0-12-374979-6.00005-8.

  140. Gomez-lopez, A, Panchireddy, S, Grignard, B, Calvo, I, Jerome, C, Detrembleur, C, Sardon, H, “Poly(hydroxyurethane) Adhesives and Coatings: State-of-the-Art and Future Directions.” ACS Sustain. Chem. Eng., 9 9541–9562. https://doi.org/10.1021/acssuschemeng.1c02558 (2021)

    Article  CAS  Google Scholar 

  141. Sørensen, PA, Kiil, S, Dam-Johansen, K, Weinell, CE, “Anticorrosive Coatings: A Review.” J. Coat. Technol. Res., 6 (2) 135–176. https://doi.org/10.1007/s11998-008-9144-2 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampson Kofi Kyei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyei, S.K., Eke, W.I., Darko, G. et al. Natural polyhydroxy resins in surface coatings: a review. J Coat Technol Res 19, 775–794 (2022). https://doi.org/10.1007/s11998-021-00604-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00604-8

Keywords

Navigation