Skip to main content
Log in

The study of the possibility of silicon dioxide coatings modified by (3-aminopropyl)triethoxysilane as protective materials for stone

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Silicon dioxide coatings modified by (3-aminopropyl)triethoxysilane (ATS) were studied to test their potential use as materials for stone protection. The synthetic route is simple and environmentally friendly due to the lack of volatile organic components. These materials are simply obtained by mixing tetraethylorthosilicate (TEOS), ATS, and OH-terminal polydimethylsiloxane (PDMS-OH). The ATS acts as a curing catalyst and coupling agent. The formulations can be directly applied onto stone substrates, particularly the external stone of buildings. Thus, the goal of an application of silicon dioxide modified by ATS is to restore and to protect building substrates. In the hybrid materials, PDMS acts to form bridges linking the silica particles. Finally, the effectiveness of these products as a stone consolidant and coating was assessed by multiple indicators, including the mechanical resistance, peeling performance, water uptake by capillarity, and contact angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu, F, Li, D, “Effect of Different Type of Acid Rain on Carbonate Stone.” Fresen. Environ. Bull., 8a 2637–2642 (2015)

    Google Scholar 

  2. Xu, F, Wang, C, Li, D, Wang, M, Xu, F, Deng, X, “Preparation of Modified Epoxy–SiO2 Hybrid Materials and Their Application in the Stone Protection.” Prog. Org. Coat., 81 58–65 (2015)

    Article  CAS  Google Scholar 

  3. Lokman, T, “Laboratory Experiments on the Investigation of the Effects of Sulphuric Acid on the Deterioration of Carbonate Stones and Surface Corrosion.” Water Air Soil Pollut., 114 1–12 (1999)

    Article  Google Scholar 

  4. Ugur, I, “Surface Characterization of Some Porous Natural Stones Modified with a Waterborne Fluorinated Polysiloxane Agent Under Physical Weathering Conditions.” J. Coat. Technol. Res., 11 (4) 639–649 (2014)

    Article  CAS  Google Scholar 

  5. Pagliolico, SL, Ozzello, ED, Sassi, G, Bongiovanni, R, “Testing Organic and Organic–Inorganic Fluorinated Hybrid Coatings as Protective Materials for Clay Bricks.” J. Coat. Technol. Res., 16 (1) 81–92 (2019)

    Article  CAS  Google Scholar 

  6. Siegesmund, S, Snethlage, R, Stone in Architecture. Properties, Durability. Springer, Heidelberg (2014)

    Book  Google Scholar 

  7. Silvia Vicini, SMEP, “In Situ Copolymerization for the Consolidation of Stone Artefacts.” Macromol. Chem. Phys., 203 1413–1419 (2002)

    Article  Google Scholar 

  8. Cardiano, P, Mineo, P, Sergi, S, Ponterio, RC, Triscari, M, Piraino, P, “Epoxy-Silica Polymers as Restoration Materials, Part II.” Polymer, 44 (16) 4435–4441 (2003)

    Article  CAS  Google Scholar 

  9. Cardiano, P, Sergi, S, Lazzari, M, Piraino, P, “Epoxy-Silica Polymers as Restoration Materials.” Polymer, 43 (25) 6635–6640 (2002)

    Article  CAS  Google Scholar 

  10. Cardiano, P, Ponterio, RC, Sergi, S, Lo Schiavo, S, Piraino, P, “Epoxy-Silica Polymers as Stone Conservation Materials.” Polymer, 46 (6) 1857–1864 (2005)

    Article  CAS  Google Scholar 

  11. Briffa, SM, Vella, DA, “The Behaviour of As-Applied and Artificially Weathered Silica-Epoxy Consolidants on a Typical Mediterranean Porous Limestone: A Comparison with TEOS.” Herit. Sci., 7 (1) 30 (2019)

    Article  Google Scholar 

  12. Xu, F, Zeng, W, Li, D, “Recent Advance in Alkoxysilane-Based Consolidants for Stone.” Prog. Org. Coat., 127 45–54 (2019)

    Article  CAS  Google Scholar 

  13. Wheeler, G, Alkoxysilanes and the Consolidation of Stone. Getty Publications, Los Angeles (2005)

    Google Scholar 

  14. Mosquera, MJ, Santos, DMDL, Valdez-Castro, L, Esquivias, L, “New Route for Producing Crack-Free Xerogels: Obtaining Uniform Pore Size.” J. Non-Cryst. Solids, 354 (2–9) 645–650 (2008)

    Article  CAS  Google Scholar 

  15. Cervantes, J, Zárraga, R, Salazar-Hernández, C, “Organotin Catalysts in Organosilicon Chemistry.” Appl. Organomet. Chem., 26 (4) 157–163 (2012)

    Article  CAS  Google Scholar 

  16. Mosquera, MJ, de Los Santos, DM, Rivas, T, “Surfactant-Synthesized Ormosils with Application to Stone Restoration.” Langmuir, 26 (9) 6737–6745 (2010)

    Article  CAS  Google Scholar 

  17. Mosquera, MJ, de Los Santos, DM, Montes, A, Valdez-Castro, L, “New Nanomaterials for Consolidating Stone.” Langmuir, 24 (6) 2772–2778 (2008)

    Article  CAS  Google Scholar 

  18. Xu, F, Li, D, “Effect of the Addition of Hydroxyl-Terminated Polydimethylsiloxane to TEOS-Based Stone Protective Materials.” J. Sol–Gel Sci. Technol., 65 (2) 212–219 (2013)

    Article  CAS  Google Scholar 

  19. Pasternack, RM, Rivillon Amy, S, Chabal, YJ, “Attachment of 3-(Aminopropyl)triethoxysilane on Silicon Oxide Surfaces: Dependence on Solution Temperature.” Langmuir, 24 (22) 12963–12971 (2008)

    Article  CAS  Google Scholar 

  20. Kurth, DG, Bein, T, “Thin Films of (3-Aminopropyl)triethoxysilane on Aluminum Oxide and Gold Substrates.” Langmuir, 11 (8) 3061–3067 (1995)

    Article  CAS  Google Scholar 

  21. Drdácký, M, Lesák, J, Rescic, S, Slížková, Z, Tiano, P, Valach, J, “Standardization of Peeling Tests for Assessing the Cohesion and Consolidation Characteristics of Historic Stone Surfaces.” Mater. Struct., 45 (4) 505–520 (2012)

    Article  Google Scholar 

  22. Tsakalof, A, Manoudis, P, Karapanagiotis, I, Chryssoulakis, I, Panayiotou, C, “Assessment of Synthetic Polymeric Coatings for the Protection and Preservation of Stone Monuments.” J. Cult. Herit., 8 (1) 69–72 (2007)

    Article  Google Scholar 

  23. Pinho, L, Elhaddad, F, Facio, DS, Mosquera, MJ, “A Novel TiO2–SiO2 Nanocomposite Converts a Very Friable Stone into a Self-Cleaning Building Material.” Appl. Surf. Sci., 275 389–396 (2013)

    Article  CAS  Google Scholar 

  24. Illescas, JF, Mosquera, MJ, “Surfactant-Synthesized PDMS/Silica Nanomaterials Improve Robustness and Stain Resistance of Carbonate Stone.” J. Phys. Chem. C, 115 (30) 14624–14634 (2011)

    Article  CAS  Google Scholar 

  25. Illescas, JF, Mosquera, MJ, “Producing Surfactant-Synthesized Nanomaterials In Situ on a Building Substrate, Without Volatile Organic Compounds.” ACS Appl. Mater. Interfaces, 4 (8) 4259–4269 (2012)

    Article  CAS  Google Scholar 

  26. Zhang, X, Ye, H, Xiao, B, Yan, L, Lv, H, Jiang, B, “Sol–Gel Preparation of PDMS/Silica Hybrid Antireflective Coatings with Controlled Thickness and Durable Antireflective Performance.” J. Phys. Chem. C, 114 19979–19983 (2010)

    Article  CAS  Google Scholar 

  27. Xu, F, Tang, J, Gao, S, “Characterization and Origin of Weathering Crusts on Kylin Carved-Stone, Kylin Countryside Nanjing—A Case Study.” J. Cult. Herit., 11 (2) 228–232 (2010)

    Article  Google Scholar 

  28. ElBaghdady, KZ, Tolba, ST, Houssien, SS, “Biogenic Deterioration of Egyptian Limestone Monuments: Treatment and Conservation.” J. Cult. Herit., 38 118–125 (2019)

    Article  Google Scholar 

  29. Jroundi, F, Schiro, M, Ruiz-Agudo, E, Elert, K, Martín-Sánchez, I, González-Muñoz, MT, Rodriguez-Navarro, C, “Protection and Consolidation of Stone Heritage by Self-Inoculation with Indigenous Carbonatogenic Bacterial Communities.” Nat. Commun., 8 (1) 279 (2017)

    Article  Google Scholar 

  30. Rodrigues, JD, Grossi, AJ, “Indicators and Ratings for the Compatibility Assessment of Conservation Actions.” J. Cult. Herit., 8 32–43 (2007)

    Article  Google Scholar 

  31. Xu, F, Li, D, Zhang, H, Peng, W, “TEOS/HDTMS Inorganic–Organic Hybrid Compound Used for Stone Protection.” J. Sol–Gel Sci. Technol., 61 429–435 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by Foundation of the Cultural Heritage Conservation Science and Technology of National Heritage Board (20110131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feigao Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Xu, F. The study of the possibility of silicon dioxide coatings modified by (3-aminopropyl)triethoxysilane as protective materials for stone. J Coat Technol Res 17, 563–572 (2020). https://doi.org/10.1007/s11998-019-00307-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00307-1

Keywords

Navigation