Skip to main content
Log in

Controlled surface modification of poly(methyl methacrylate) film by fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/hexagonal boron nitride nanocomposites

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Fluoroalkyl end-capped vinyltrimethoxysilane oligomer [RF-(CH2CHSi(OMe)3)n-RF; n = 2, 3; RF = CF(CF3)OC3F7] undergoes sol–gel reactions in the presence of hexagonal boron nitride (h-BN) nanoparticles under alkaline or acidic conditions at room temperature to afford the corresponding fluorinated oligomeric silica/h-BN nanocomposites in good isolated yields (~ 80%), respectively. The fluorinated oligomeric silica/h-BN nanocomposites thus obtained were found to exhibit a good dispersibility toward the traditional organic media including water. These two kinds of fluorinated nanocomposites were applied to the surface modification of poly(methyl methacrylate) (PMMA). The fluorinated nanocomposites prepared under alkaline conditions can give not only a good oleophobic characteristic imparted by longer fluoroalkyl groups in the composites but also the higher fluorescent emission related to the presence of h-BN on the only surface side of the modified PMMA film. In contrast, the fluorinated nanocomposites prepared under acidic conditions can provide a good oleophobic characteristic and a higher fluorescent emission on both the surface and even on the reverse side of the PMMA film. Such unique controlled surface modification ability will be discussed by 29Si solid-state NMR spectra of these two types of the nanocomposites.

Graphic abstract

Surface arrangement of the RF-(VM-SiO2)n-RF/h-BN nanocomposites, which were prepared under alkaline or acidic conditions, toward the PMMA film

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 2

Similar content being viewed by others

References

  1. Zheng, Z, Cox, M, Li, B, “Surface Modification of Hexagonal Boron Nitride Nanomaterials: A Review.” J. Mater. Sci., 53 66–99 (2018)

    Article  CAS  Google Scholar 

  2. Yin, J, Li, J, Hang, Y, Yu, J, Tai, G, Li, X, Zhang, Z, Guo, W, “Boron Nitride Nanostructures: Fabrication, Functionalization and Applications.” Small, 12 2942–2968 (2016)

    Article  CAS  Google Scholar 

  3. Cakmakci, E, Kocyigit, C, Cakir, S, Durmus, A, Kahraman, MV, “Preparation and Characterization of Thermally Conductive Thermoplastic Polyurethane/h-BN Nanocomposites.” Polym. Compos., (2014). https://doi.org/10.1002/pc.22692

    Article  Google Scholar 

  4. Kim, K, Kim, M, Hwang, Y, Kim, J, “Chemically Modified Boron Nitride-Epoxy Terminated Dimethylsiloxane Composite for Improving the Thermal Conductivity.” Ceram. Int., 1 2047–2056 (2014)

    Article  Google Scholar 

  5. Qin, L, Li, G, Hou, J, Yu, X, Ding, H, Zhang, Q, Wang, N, Qu, X, “Preparation, Characterization, and Thermal Properties of Poly(methyl methacrylate)/Boron Nitride Composites by Bulk Polymerization.” Polym. Compos., (2015). https://doi.org/10.1002/pc.2308

    Article  Google Scholar 

  6. Gao, Y, Gu, A, Jiao, Y, Yang, Y, Liang, G, Hu, J-T, Yao, W, Yuan, L, “High-Performance Hexagonal Boron Nitride/Bismaleimide Composites with High Thermal Conductivity, Low Coefficient of Thermal Expansion, and Low Dielectric Loss.” Polym. Adv. Technol., 23 919–928 (2012)

    Article  CAS  Google Scholar 

  7. Zhang, J, Wang, X, Yu, C, Li, Q, Li, Z, Li, C, Lu, H, Zhang, Q, Zhao, J, Hu, M, Yao, Y, “A Facile Method to Prepare Flexible Boron Nitride/Poly(vinyl alcohol) Composites with Enhanced Thermal Conductivity.” Compos. Sci. Technol., 149 41–47 (2017)

    Article  CAS  Google Scholar 

  8. Song, W-L, Wang, P, Cao, L, Anderson, A, Meziani, MJ, Farr, AJ, Sun, Y-P, “Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance.” Angew. Chem., 124 6604–6607 (2012)

    Article  Google Scholar 

  9. Yang, N, Xu, C, Hou, J, Yao, Y, Zhang, Q, Grami, ME, He, L, Wang, N, Qu, X, “Preparation and Properties of Thermally Conductive Polyimide/Boron Nitride Composites.” RSC Adv., 6 18279–18287 (2016)

    Article  CAS  Google Scholar 

  10. Gu, J, Lv, Z, Wu, Y, Guo, Y, Tian, L, Qiu, H, Li, W, Zhang, Q, “Dielectric Thermally Conductive Boron Nitride/Polyimide Composites with Outstanding Thermal Stabilities via In Situ Polymerization-Electrospinning-Hot Press Method.” Compos. Part A, 94 209–216 (2017)

    Article  CAS  Google Scholar 

  11. Li, T-L, Hsu, SL-C, “Preparation and Properties of Thermally Conductive Photosensitive Polyimide/Boron Nitride Nanocomposites.” J. Appl. Polym. Sci., 121 916–922 (2011)

    Article  CAS  Google Scholar 

  12. Wu, Y, Xue, Y, Qin, S, Liu, D, Wang, X, Hu, X, Li, J, Wang, X, Bando, Y, Golberg, D, Chen, Y, Gogotsi, Y, Lei, W, “BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications.” ACS Appl. Mater. Interfaces, 9 43163–43170 (2017)

    Article  CAS  Google Scholar 

  13. Wang, J, Wu, Y, Xue, Y, Liu, D, Wang, X, Hu, X, Bando, Y, Lei, W, “Super-Compatible Functional Boron Nitride Nanosheets/Polymer Films with Excellent Mechanical Properties and Ultra-high Thermal Conductivity for Thermal Management.” J. Mater. Chem. C, 6 1363–1369 (2018)

    Article  CAS  Google Scholar 

  14. Wu, Y, Guo, M, Liu, G, Xue, S, Xia, Y, Liu, D, Lei, W, “Surface Modification of Boron Nitride Nanosheets by Polyelectrolytes via Atom Transfer Radical Polymerization.” Mater. Res. Express, 5 045026 (2018). https://doi.org/10.1088/2053-1591/aab8ec

    Article  CAS  Google Scholar 

  15. Guo, M, Wu, Y, Xue, S, Xia, Y, Zhang, R, Liu, D, Lei, W, Zhang, T, “Surface Modification of Boron Nitride Nanosheets with Polycationic Electrolytes Through ARGET ATRP for Enhancing Mechanical Properties of Cellulose Film.” Mater. Lett., 242 127–130 (2019)

    Article  CAS  Google Scholar 

  16. Xue, S, Wu, Y, Guo, M, Xia, Y, Liu, D, Zhou, H, Lei, W, “Self-healable Poly(acrylic Acid-co-Maleic Acid)/Glycerol/Boron Nitride Nanosheet Composite Hydrogels at Low Temperature with Enhanced Mechanical Properties and Water Retention.” Soft Matter., 15 3680–3688 (2019)

    Article  CAS  Google Scholar 

  17. Xue, S, Wu, Y, Wang, J, Guo, M, Liu, D, Lei, W, “Boron Nitride Nanosheets/PNIPAM Hydrogels with Improved Thermo-responsive Performance.” Materials, 11 1069 (2018). https://doi.org/10.3390/ma11071069

    Article  CAS  Google Scholar 

  18. Ameduri, B, Sawada, H (eds.), Fluorinated Polymers: Volume 1, “Synthesis, Properties, Processing and Simulation”. RSC, Cambridge (2016)

    Google Scholar 

  19. Ameduri, B, Sawada, H (eds.), Fluorinated Polymers: Volume 2, “Applications”. RSC, Cambridge (2016)

    Google Scholar 

  20. Sawada, H, “Fluorinated Peroxides.” Chem. Rev., 96 1779–1808 (1996)

    Article  CAS  Google Scholar 

  21. Sawada, H, “Synthesis of Self-assembled Fluoroalkyl End-Capped Oligomeric Aggregates—Applications of These Aggregates to Fluorinated Oligomeric Nanocomposites.” Prog. Polym. Sci., 32 509–533 (2007)

    Article  CAS  Google Scholar 

  22. Sawada, H, “Preparation and Applications of Novel Fluoroalkyl End-Capped Oligomeric Nanocomposites.” Polym. Chem., 3 46–65 (2012)

    Article  CAS  Google Scholar 

  23. Sawada, H, “Novel Self-assembled Molecular Aggregates Formed by Fluoroalkyl End-Capped Oligomers and Their Application.” J. Fluorine Chem., 121 111–130 (2003)

    Article  CAS  Google Scholar 

  24. Sawada, H, Suzuki, T, Takashima, H, Takishita, K, “Preparation and Properties of Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomeric Nanoparticles—A New Approach to Facile Creation of a Completely Superhydrophobic Coating Surface with These Nanoparticles.” Colloid Polym. Sci., 286 1569 (2008)

    Article  CAS  Google Scholar 

  25. Sawada, H, Nakayama, M, “Synthesis of Fluorine-Containing Organosilicon Oligomers.” J. Chem. Soc. Chem. Commun., 10 677–678 (1991)

    Article  Google Scholar 

  26. Mugisawa, M, Kasai, R, Sawada, H, “Cross-Linked Fluoroalkyl End-Capped Co-oligomeric Nanoparticle-Encapsulated Fullerene—A New Approach to the Surface Modification of Traditional Organic Polymers with Fullerene-Containing Nanoparticles.” Langmuir, 25 415–421 (2009)

    Article  CAS  Google Scholar 

  27. Sawada, H, Yanagida, K, Inaba, Y, Sugiya, M, Kawase, T, Tomita, T, “Synthesis and Antibacterial Activity of Novel Fluoroalkyl End-Capped Cooligomers Containing Dimethyl(octyl) Ammonium Segments.” Eur. Polym. J., 37 1433–1439 (2001)

    Article  CAS  Google Scholar 

  28. Suzuki, J, Takegahara, Y, Oikawa, Y, Chiba, M, Yamada, S, Sugiya, M, Sawada, H, “Preparation of Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomeric Silica/Poly(tetrafluoroethylene) Nanocomposites Possessing a Superoleophilic/Superhydrophobic Characteristic: Application to the Separation of Oil and Water.” J. Sol Gel Sci. Technol., 81 611–622 (2017)

    Article  CAS  Google Scholar 

  29. Museur, L, Anglos, D, Petitet, J-P, Michel, J-P, Kanaev, AV, “Photoluminescence of Hexagonal Boron Nitride: Effect of Surface Oxidation Under UV-Laser Irradiation.” J. Photoluminescence, 127 595–600 (2007)

    Article  CAS  Google Scholar 

  30. Kubota, Y, Watanabe, K, Tsuda, O, Taniguchi, T, “Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure.” Science, 317 932–934 (2007)

    Article  CAS  Google Scholar 

  31. Watanabe, K, Taniguchi, T, Kaneda, H, “Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal.” Nat. Mater., 3 404–409 (2004)

    Article  CAS  Google Scholar 

  32. Watanabe, K, Taniguchi, GT, Kaneda, H, “Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal.” Phys. Stat. Sol. (a), 201 2561–2565 (2004)

    Article  CAS  Google Scholar 

  33. Saengkaew, J, Ogasawara, T, Yamashita, K, Kongparakul, S, Sawada, H, “Preparation of Fluoroalkyl End-Capped Oligomers/Hexagonal Boron Nitride Nanocomposites Possessing No Weight Loss Behavior in Nanocomposites Even After Calcination at 800°C.” Open J. Compos. Mater., 9 72–98 (2019)

    Article  CAS  Google Scholar 

  34. Wei, L, Shi, D, Zhou, Z, Ye, P, Wang, J, Zhao, J, Liu, L, Chen, C, Zhang, Y, “Functionalized Self-assembled Monolayers on Mesoporous Silica Nanoparticles with High Surface Coverage.” Nanoscale Res. Lett., 7 (334) 1–8 (2012)

    Google Scholar 

  35. Comotti, A, Bracco, S, Valsesia, P, Ferretti, L, Sozzani, P, “2D Multinuclear NMR, Hyperpolarized Xenon and Gas Storage in Organosilica Nanochannels with Crystalline Order in the Walls.” J. Am. Chem. Soc., 129 8566–8576 (2007)

    Article  CAS  Google Scholar 

  36. Nishida, M, Tanaka, T, Kanematsu, W, “Solid–State NMR Study on Changes of Phosphate and Proton Species in Metal Pyrophosphate Composite (MP2O7–MO2) Ceramics.” Magn. Reson. Chem., 55 570–578 (2017)

    Article  CAS  Google Scholar 

  37. Ide, M, El-Roz, M, De Canck, E, Vicente, A, Planckaert, T, Bogaerts, T, Van Driessche, I, Lynen, F, Van Speybroeck, V, Thybault-Starzyk, F, Van Der Voort, P, “Quantification of Silanol Sites for the Most Common Mesoporous Ordered Silicas and Organosilicas: Total Versus Accessible Silanols.” Phys. Chem. Chem. Phys., 15 642–650 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to MARUKA Co., Ltd., Gifu, Japan, for supplying h-BN nanoparticles.

Funding

This work was partially supported by a Grant-in-Aid for Scientific Research 19K05027 from the Ministry of Education, Science, Sports, and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Sawada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saengkaew, J., Ogasawara, T., Yamashita, K. et al. Controlled surface modification of poly(methyl methacrylate) film by fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/hexagonal boron nitride nanocomposites. J Coat Technol Res 17, 643–655 (2020). https://doi.org/10.1007/s11998-019-00261-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00261-y

Keywords

Navigation