Skip to main content

Advertisement

Log in

Anticorrosive epoxy/clay nanocomposite coatings: rheological and protective properties

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The preparation of epoxy/clay nanocomposites (NCs) and their insertion into coatings are of great importance since the NCs could enhance the protective performances. In this study, epoxy NCs with 1–10 wt% of nanoclay Cloisite 30B (C30B) were prepared by the sonication-assisted solution method. The rheological measurements of epoxy/C30B suspensions revealed non-Newtonian, shear-thinning behavior of the uncured NCs, with an increase in the viscosity, yield stress, and shear modules with increasing organoclay content, while the dispersion effectiveness of C30B decreased. A significant enhancement of the rheological parameters was observed at the second percolation threshold (4.1 vol%) due to the formation of a continuous network of 45-layer-thick tactoids. Although NCs with 1–3 wt% C30B exhibited slightly reduced mechanical and adhesion properties compared with the cured reference epoxy resin, the epoxy primer and topcoat based on NC with 1 wt% C30B generally displayed improved impact resistance and maintained flexibility, pendulum hardness, and good adhesion properties. Two-layer coating systems, i.e., NC-based primers and topcoats, had higher corrosion stability in a salt spray chamber compared to the unmodified system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Huttunen-Saarivirta, E, Vaganov, GV, Yudin, VE, Vuorinen, J, “Characterization and Corrosion Protection Properties of Epoxy Powder Coatings Containing Nanoclays.” Prog. Org. Coat., 76 757–767 (2013)

    Article  Google Scholar 

  2. Nematollahi, M, Heidarian, M, Peikari, M, Kassiriha, SM, Arianpouya, N, Esmaeilpour, M, “Comparison Between the Effect of Nanoglass Flake and Montmorillonite Organoclay on Corrosion Performance of Epoxy Coating.” Corros. Sci., 52 1809–1817 (2010)

    Article  Google Scholar 

  3. Shi, H, Liu, F, Yang, L, Han, E, “Characterization of Protective Performance of Epoxy Reinforced with Nanometer-Sized TiO2 and SiO2.” Prog. Org. Coat., 62 359–368 (2008)

    Article  Google Scholar 

  4. Sørensen, PA, Kiil, S, Dam-Johansen, K, Weinell, CE, “Anticorrosive Coatings: A Review.” J. Coat. Technol. Res., 6 135–176 (2009)

    Article  Google Scholar 

  5. de Lima-Neto, P, de Araújo, AP, Araújo, WS, Correia, AN, “Study of the Anticorrosive Behaviour of Epoxy Binders Containing Non-toxic Inorganic Corrosion Inhibitor Pigments.” Prog. Org. Coat., 62 344–350 (2008)

    Article  Google Scholar 

  6. Ramezanzadeh, B, Arman, SY, Mehdipour, M, “Anticorrosion Properties of an Epoxy Zinc-Rich Composite Coating Reinforced with Zinc, Aluminum, and Iron Oxide Pigments.” J. Coat. Technol. Res., 11 727–737 (2014)

    Article  Google Scholar 

  7. Piazza, D, Lorandi, NP, Pasqual, CI, Scienza, LC, Zattera, AJ, “Influence of a Microcomposite and a Nanocomposite on the Properties of an Epoxy-Based Powder Coating.” Mater. Sci. Eng. A, 528 6769–6775 (2011)

    Article  Google Scholar 

  8. Hang, TTX, Truc, TA, Nam, TH, Oanh, VK, Jorcin, J-B, Pébère, N, “Corrosion Protection of Carbon Steel by an Epoxy Resin Containing Organically Modified Clay.” Surf. Coat. Technol., 201 7408–7415 (2007)

    Article  Google Scholar 

  9. Truc, TA, Hang, TTX, Oanh, VK, Dantras, E, Lacabanne, C, Oquab, D, Pébère, N, “Incorporation of an Indole-3 Butyric Acid Modified Clay in Epoxy Resin for Corrosion Protection of Carbon Steel.” Surf. Coat. Technol., 202 4945–4951 (2008)

    Article  Google Scholar 

  10. Hang, TTX, Truc, TA, Olivier, M-G, Vandermiers, C, Guérit, N, Pébère, N, “Corrosion Protection Mechanisms of Carbon Steel by an Epoxy Resin Containing Indole-3 Butyric Acid Modified Clay.” Prog. Org. Coat., 69 410–416 (2010)

    Article  Google Scholar 

  11. Bagherzadeh, MR, Mousavinejad, T, “Preparation and Investigation of Anticorrosion Properties of the Water-Based Epoxy-Clay Nanocoating Modified by Na+-MMT and Cloisite 30B.” Prog. Org. Coat., 74 589–595 (2012)

    Article  Google Scholar 

  12. Wang, J, Wang, G, “Influences of Montmorillonite on Fire Protection, Water and Corrosion Resistance of Waterborne Intumescent Fire Retardant Coating for Steel Structure.” Surf. Coat. Technol., 239 177–184 (2014)

    Article  Google Scholar 

  13. Darmiani, E, Danaee, I, Rashed, GR, Zaarei, D, “Formulation and Study of Corrosion Prevention Behavior of Epoxy Cerium Nitrate–Montmorillonite Nanocomposite Coated Carbon Steel.” J. Coat. Technol. Res., 10 493–502 (2013)

    Article  Google Scholar 

  14. Gârea, S-A, Iovu, H, “New Epoxy Coating Systems Which Contain Multipurpose Additives Based on Organophilic Montmorillonite.” Prog. Org. Coat., 56 319–326 (2006)

    Article  Google Scholar 

  15. Kowalczyk, K, Spychaj, T, “Epoxy Coatings with Modified Montmorillonites.” Prog. Org. Coat., 62 425–429 (2008)

    Article  Google Scholar 

  16. Kowalczyk, K, Spychaj, T, “Protective Epoxy Dispersion Coating Materials Modified a Posteriori with Organophilized Montmorillonites.” Surf. Coat. Technol., 204 635–641 (2009)

    Article  Google Scholar 

  17. Ho, M-W, Lam, C-K, Lau, K-T, Ng, DHL, Hui, D, “Mechanical Properties of Epoxy-Based Composites Using Nanoclays.” Compos. Struc., 75 415–421 (2006)

    Article  Google Scholar 

  18. Chiu, C-W, Lin, J-J, “Self-Assembly Behavior of Polymer-Assisted Clays.” Prog. Polym. Sci., 37 406–444 (2012)

    Article  Google Scholar 

  19. Burgentzlé, D, Duchet, J, Gérard, JF, Jupin, A, Fillon, B, “Solvent-Based Nanocomposite Coatings: I. Dispersion of Organophilic Montmorillonite in Organic Solvents.” J. Colloid Interface Sci., 278 26–39 (2004)

    Article  Google Scholar 

  20. Bhatt, J, Somani, RS, Mody, HM, Bajaj, HC, “Rheological Study of Organoclays Prepared From Indian Bentonite: Effect of Dispersing Methods.” Appl. Clay Sci., 83–84 106–114 (2013)

    Article  Google Scholar 

  21. Le Pluart, L, Duchet, J, Sautereau, H, Halley, P, Gerard, JF, “Rheological Properties of Organoclay Suspensions in Epoxy Network Precursors.” Appl. Clay Sci., 25 207–219 (2004)

    Article  Google Scholar 

  22. Boukerrou, A, Duchet, J, Fellahi, S, Sautereau, H, “Effect of Geometry and Surface Properties of Silicates on Nanostructuration of Suspension in Precursors of an Epoxy/Amine Network.” J. Appl. Polym. Sci., 102 1380–1390 (2006)

    Article  Google Scholar 

  23. Kotsilkova, R, “Processing–Structure–Properties Relationships of Mechanically and Thermally Enhanced Smectite/Epoxy Nanocomposites.” J. Appl. Polym. Sci., 97 2499–2510 (2005)

    Article  Google Scholar 

  24. Solar, L, Nohales, A, Muñoz-Espí, R, López, D, Gómez, CM, “Viscoelastic Behavior of Epoxy Prepolymer/Organophilic Montmorillonite Dispersions.” J. Polym. Sci. Part B: Polym. Phys., 46 1837–1844 (2008)

    Article  Google Scholar 

  25. Huynh, H-T, Benzarti, K, Duc, M, “Role of Interfacial Chemistry on the Rheology and Thermo-mechanical Properties of Clay-Polymer Nanocomposites for Building Applications.” Chem. Pap., 66 519–531 (2012)

    Article  Google Scholar 

  26. Deka, A, Dey, N, “Rheological Studies of Two Component High Build Epoxy and Polyurethane Based High Performance Coatings.” J. Coat. Technol. Res., 10 305–315 (2013)

    Article  Google Scholar 

  27. Kahraman, HT, Gevgilili, H, Kalyon, DM, Pehlivan, E, “Nanoclay Dispersion into a Thermosetting Binder Using Sonication and Intensive Mixing Methods.” J. Appl. Polym. Sci., 129 1773–1783 (2013)

    Article  Google Scholar 

  28. Tomić, MD, Dunjić, B, Likić, V, Bajat, J, Rogan, J, Djonlagić, J, “The Use of Nanoclay in Preparation of Epoxy Anticorrosive Coatings.” Prog. Org. Coat., 77 518–527 (2014)

    Article  Google Scholar 

  29. Brown, JM, Curliss, D, Vaia, RA, “Thermoset-Layered Silicate Nanocomposites. Quaternary Ammonium Montmorillonite with Primary Diamine Cured Epoxies.” Chem. Mater., 12 3376–3384 (2000)

    Article  Google Scholar 

  30. Yeh, JM, Huang, HY, Chen, CL, Su, WF, Yu, YH, “Siloxane-Modified Epoxy Resin–Clay Nanocomposite Coatings with Advanced Anticorrosive Properties Prepared by a Solution Dispersion Approach.” Surf. Coat. Technol., 200 2753–2763 (2006)

    Article  Google Scholar 

  31. Zhu, J, Wei, S, Yadav, A, Guo, Z, “Rheological Behaviors and Electrical Conductivity of Epoxy Resin Nanocomposites Suspended with In Situ Stabilized Carbon Nanofibers.” Polymer, 51 2643–2651 (2010)

    Article  Google Scholar 

  32. Sodeifian, G, Nikooamal, H, Yousefi, A, “Molecular Dynamics Study of Epoxy/Clay Nanocomposites: Rheology and Molecular Confinement.” J. Polym. Res., 19 1–12 (2012)

    Article  Google Scholar 

  33. Ray, SS, Okamoto, K, Okamoto, M, “Structure and Properties of Nanocomposites Based on Poly(butylene succinate-co-adipate) and Organically Modified Montmorillonite.” J. Appl. Polym. Sci., 102 777–785 (2006)

    Article  Google Scholar 

  34. Kim, TH, Lim, ST, Lee, CH, Choi, HJ, Jhon, MS, “Preparation and Rheological Characterization of Intercalated Polystyrene/Organophilic Montmorillonite Nanocomposite.” J. Appl. Polym. Sci., 87 2106–2112 (2003)

    Article  Google Scholar 

  35. Becker, O, Sopade, P, Bourdonnay, R, Halley, PJ, Simon, GP, “Layered Silicate Nanocomposites Based on Various High-Functionality Epoxy Resins. Part II: The Influence of an Organoclay on the Rheological Behavior of Epoxy Prepolymers.” Polym. Eng. Sci., 43 1683–1690 (2003)

    Article  Google Scholar 

  36. Durmus, A, Kasgoz, A, Macosko, CW, “Linear Low Density Polyethylene (LLDPE)/clay nanocomposites. Part I: Structural Characterization and Quantifying Clay Dispersion by Melt Rheology.” Polymer, 48 4492–4502 (2007)

    Article  Google Scholar 

  37. Derakhshandeh, B, Kerekes, RJ, Hatzikiriakos, SG, Bennington, CPJ, “Rheology of Pulp Fibre Suspensions: A Critical Review.” Chem. Eng. Sci., 66 3460–3470 (2011)

    Article  Google Scholar 

  38. Jeon, HS, Rameshwaram, JK, Kim, G, “Structure-property Relationships in Exfoliated Polyisoprene/Clay Nanocomposites.” J. Polym. Sci. Part B: Polym. Phys., 42 1000–1009 (2004)

    Article  Google Scholar 

  39. Kotsilkova, R, Fragiadakis, D, Pissis, P, “Reinforcement Effect of Carbon Nanofillers in an Epoxy Resin System: Rheology, Molecular Dynamics, and Mechanical Studies.” J. Polym. Sci. Part B: Polym. Phys., 43 522–533 (2005)

    Article  Google Scholar 

  40. Ren, J, Silva, AS, Krishnamoorti, R, “Linear Viscoelasticity of Disordered Polystyrene-Polyisoprene Block Copolymer Based Layered-Silicate Nanocomposites.” Macromolecules, 33 3739–3746 (2000)

    Article  Google Scholar 

  41. Wooster, TJ, Abrol, S, MacFarlane, DR, “Rheological and Mechanical Properties of Percolated Cyanate Ester Nanocomposites.” Polymer, 46 8011–8017 (2005)

    Article  Google Scholar 

  42. Isichenko, MB, “Percolation, Statistical Topography, and Transport in Random Media.” Rev. Mod. Phys., 64 961–1043 (1992)

    Article  Google Scholar 

  43. Reyna-Valencia, A, Deyrail, Y, Bousmina, M, “In Situ Follow-Up of the Intercalation Process in a Clay/Polymer Nanocomposite Model System by Rheo-XRD Analyses.” Macromolecules, 43 354–361 (2009)

    Article  Google Scholar 

  44. Souza, VS, Bianchi, O, Lima, MFS, Mauler, RS, “Morphological, Thermomechanical and Thermal Behavior of Epoxy/MMT Nanocomposites.” J. Non-Cryst. Solids, 400 58–66 (2014)

    Article  Google Scholar 

  45. Kornmann, X, Lindberg, H, Berglund, LA, “Synthesis of Epoxy–Clay Nanocomposites: Influence of the Nature of the Clay on Structure.” Polymer, 42 1303–1310 (2001)

    Article  Google Scholar 

  46. Awaja, F, Gilbert, M, Kelly, G, Fox, B, Pigram, PJ, “Adhesion of Polymers.” Prog. Polym. Sci., 34 948–968 (2009)

    Article  Google Scholar 

  47. Semoto, T, Tsuji, Y, Yoshizawa, K, “Molecular Understanding of the Adhesive Force Between a Metal Oxide Surface and an Epoxy Resin.” J. Phys. Chem. C, 115 11701–11708 (2011)

    Article  Google Scholar 

  48. Al-Turaif, HA, “Effect of Nano TiO2 Particle Size on Mechanical Properties of Cured Epoxy Resin.” Prog. Org. Coat., 69 241–246 (2010)

    Article  Google Scholar 

  49. Astruc, A, Joliff, E, Chailan, JF, Aragon, E, Petter, CO, Sampaio, CH, “Incorporation of Kaolin Fillers Into an Epoxy/Polyamidoamine Matrix for Coatings.” Prog. Org. Coat., 65 158–168 (2009)

    Article  Google Scholar 

  50. Kalenda, P, Kalendová, A, Štengl, V, Antoš, P, Šubrt, J, Kváča, Z, Bakardjieva, S, “Properties of Surface-Treated Mica in Anticorrosive Coatings.” Prog. Org. Coat., 49 137–145 (2004)

    Article  Google Scholar 

  51. Sancaktar, E, Kuznicki, J, “Nanocomposite Adhesives: Mechanical Behavior with Nanoclay.” Int. J. Adhes. Adhes., 31 286–300 (2011)

    Article  Google Scholar 

  52. Shi, X, Nguyen, TA, Suo, Z, Liu, Y, Avci, R, “Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating.” Surf. Coat. Technol., 204 237–245 (2009)

    Article  Google Scholar 

  53. Legghe, E, Aragon, E, Bélec, L, Margaillan, A, Melot, D, “Correlation Between Water Diffusion and Adhesion Loss: Study of an Epoxy Primer on Steel.” Prog. Org. Coat., 66 276–280 (2009)

    Article  Google Scholar 

  54. Misawa, T, Hashimoto, K, Shimodaira, S, “The Mechanism of Formation of Iron Oxide and Oxyhydroxides in Aqueous Solutions at Room Temperature.” Corros. Sci., 14 131–149 (1974)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project Nos. 172062 and III 45019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Dunjić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomić, M.D., Dunjić, B., Bajat, J.B. et al. Anticorrosive epoxy/clay nanocomposite coatings: rheological and protective properties. J Coat Technol Res 13, 439–456 (2016). https://doi.org/10.1007/s11998-015-9762-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-015-9762-4

Keywords

Navigation