Skip to main content
Log in

Improved Curcumin Recovery and In Vitro Biological Activity of Turmeric Extracts Using Nipa Palm Syrup– and Nipa Palm Vinegar–Based Natural Deep Eutectic Solvent (NADES) Hybridized with Microwave-Assisted Extraction

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This was the first study to use local Southern Thai ingredients, namely, nipa palm syrup (NS) and nipa palm vinegar (NV), in the formulation of natural deep eutectic solvent (NADES) for the recovery of bioactive curcumin from turmeric. Five NADES formulations (A to E) were obtained by varying concentration of liquid media (NS, NV, and water) and characterized using FTIR. When compared to other formulations and 80% methanol, the NADES D with a NS to NV to water ratio of 1:5:5 (w/w/w) recovered the most curcumin content (p < 0.05). The extraction conditions of microwave-assisted extraction (MAE) with selected NADES were optimized using response surface methodology (RSM) to maximize curcumin recovery. NADES D achieved the highest curcumin content (43.04 mg/g) from turmeric at a solvent ratio of 1:10, microwave power of 1000 W, and extraction time of 51 s. The NADES D-based curcumin extract outperformed all antioxidant activities (DPPH scavenging activity and FRAP). The NADES D–based extract is non-toxic to RAW264.7 cells at up to 62.50 µg/mL. As a result, NADES-based NS and NV are a viable green solvent for obtaining bioactive compounds, particularly curcumin from turmeric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data and the materials are all available in this article.

References

  • Airouyuwa, J. O., Mostafa, H., Riaz, A., & Maqsood, S. (2022). Utilization of natural deep eutectic solvents and ultrasound-assisted extraction as green extraction technique for the recovery of bioactive compounds from date palm (Phoenix dactylifera L.) seeds: An investigation into optimization of process parameters. Ultrasonics Sonochemistry91, 106233.

  • Airouyuwa, J. O., Mostafa, H., Riaz, A., Stathopoulos, C., & Maqsood, S. (2023). Natural deep eutectic solvents and microwave-assisted green extraction for efficient recovery of bioactive compounds from by-products of date fruit (Phoenix dactylifera L.) processing: Modeling, optimization, and phenolic characterization. Food and Bioprocess Technology16(4), 824–843.

  • AOAC. (2000). Official methods of analysis. Association of Official Analytical Chemists.

    Google Scholar 

  • Ashrafizadeh, M., Rafiei, H., Mohammadinejad, R., Afshar, E. G., Farkhondeh, T., & Samarghandian, S. (2020). Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: A review. Phytotherapy Research, 34(8), 1745–1760.

    Article  CAS  PubMed  Google Scholar 

  • Bakirtzi, C., Triantafyllidou, K., & Makris, D. P. (2016). Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 3(3), 120–127.

    Article  Google Scholar 

  • Barbieri, J. B., Goltz, C., Cavalheiro, F. B., Toci, A. T., Igarashi-Mafra, L., & Mafra, M. R. (2020). Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds. Industrial Crops and Products 144, 112049.

  • Bellary, A. N., & Rastogi, N. K. (2014). Effect of selected pretreatments on impregnation of curcuminoids and their influence on physico-chemical properties of raw banana slices. Food and Bioprocess Technology, 7, 2803–2812.

    Article  CAS  Google Scholar 

  • Bener, M., Şen, F. B., Önem, A. N., Bekdeşer, B., Çelik, S. E., Lalikoglu, M., & Apak, R. (2022). Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chemistry, 385, 132633.

  • Choudhary, P., Guleria, S., Sharma, N., Salaria, K. H., Chalotra, R., Ali, V., & Vyas, D. (2021). Comparative phenolic content and antioxidant activity of some medicinal plant extracts prepared by choline chloride based green solvents and methanol. Current Research in Green and Sustainable Chemistry, 4, 100224.

    Article  CAS  Google Scholar 

  • Costa, F. S., Moreira, L. S., Silva, A. M., Silva, R. J., dos Santos, M. P., da Silva, E. G. P., & Amaral, C. D. (2022). Natural deep eutectic solvent-based microwave-assisted extraction in the medicinal herb sample preparation and elemental determination by ICP OES. Journal of Food Composition and Analysis, 109, 104510.

    Article  CAS  Google Scholar 

  • Cui, Q., Liu, J. Z., Wang, L. T., Kang, Y. F., Meng, Y., Jiao, J., & Fu, Y. J. (2018). Sustainable deep eutectic solvents preparation and their efficiency in extraction and enrichment of main bioactive flavonoids from sea buckthorn leaves. Journal of Cleaner Production, 184, 826–835.

    Article  CAS  Google Scholar 

  • da Silva, D. T., Pauletto, R., da Silva Cavalheiro, S., Bochi, V. C., Rodrigues, E., Weber, J., & Emanuelli, T. (2020). Natural deep eutectic solvents as a biocompatible tool for the extraction of blueberry anthocyanins. Journal of Food Composition and Analysis, 89, 103470.

    Article  Google Scholar 

  • Dai, Y., Rozema, E., Verpoorte, R., & Choi, Y. H. (2016). Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. Journal of Chromatography A, 1434, 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Dai, Y., van Spronsen, J., Witkamp, G. J., Verpoorte, R., & Choi, Y. H. (2013). Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta, 766, 61–68.

    Article  CAS  PubMed  Google Scholar 

  • Dai, Y., Verpoorte, R., & Choi, Y. H. (2014). Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chemistry, 159, 116–121.

    Article  CAS  PubMed  Google Scholar 

  • de los Ángeles Fernández, M., Boiteux, J., Espino, M., Gomez, F. J., & Silva, M. F. (2018). Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Analytica Chimica Acta, 1038, 1–10.

    Article  Google Scholar 

  • Dhar, R., Kimseng, R., Chokchaisiri, R., Hiransai, P., Utaipan, T., Suksamrarn, A., & Chunglok, W. (2018). 2′, 4-Dihydroxy-3′, 4′, 6′-trimethoxychalcone from Chromolaena odorata possesses anti-inflammatory effects via inhibition of NF-κB and p38 MAPK in lipopolysaccharide-activated RAW 264.7 macrophages. Immunopharmacology and Immunotoxicology, 40(1), 43–51.

  • Díaz-Álvarez, M., & Martín-Esteban, A. (2022). Preparation and further evaluation of l-menthol-based natural deep eutectic solvents as supported liquid membrane for the hollow fiber liquid-phase microextraction of sulfonamides from environmental waters. Advances in Sample Preparation, 4, 100047.

    Article  Google Scholar 

  • Doldolova, K., Bener, M., Lalikoğlu, M., Aşçı, Y. S., Arat, R., & Apak, R. (2021). Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chemistry, 353, 129337.

    Article  CAS  PubMed  Google Scholar 

  • Fan, C., Sebbah, T., Liu, Y., & Cao, X. (2021). Terpenoid-capric acid based natural deep eutectic solvent: Insight into the nature of low viscosity. Cleaner Engineering and Technology, 3, 100116.

    Article  Google Scholar 

  • Hasanzadeh, S., Read, M. I., Bland, A. R., Majeed, M., Jamialahmadi, T., & Sahebkar, A. (2020). Curcumin: An inflammasome silencer. Pharmacological Research, 159, 104921.

    Article  PubMed  Google Scholar 

  • Huber, V., Muller, L., Degot, P., Touraud, D., & Kunz, W. (2021). NADES-based surfactant-free microemulsions for solubilization and extraction of curcumin from Curcuma longa. Food Chemistry, 355, 129624.

    Article  CAS  PubMed  Google Scholar 

  • Jansakun, C., Chulrik, W., Chaichompoo, W., Yotmanee, P., Lehboon, K., Chunglok, W., Sattayakhom, A., Hiransai, P., Kamdee, K., Utaipan, T., Suksamrarn, A., & Chunglok, W. (2021). 1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one alleviates lipopolysaccharide-induced inflammation by targeting NF-κB translocation in murine macrophages and it interacts with MD2 in silico. Molecular Medicine Reports, 23(3), 209.

    Article  CAS  PubMed  Google Scholar 

  • Jurić, T., Mićić, N., Potkonjak, A., Milanov, D., Dodić, J., Trivunović, Z., & Popović, B. M. (2021). The evaluation of phenolic content, in vitro antioxidant and antibacterial activity of Mentha piperita extracts obtained by natural deep eutectic solvents. Food Chemistry, 362, 130226.

    Article  PubMed  Google Scholar 

  • Khatun, M., Nur, M. A., Biswas, S., Khan, M., & Amin, M. Z. (2021). Assessment of the antioxidant, anti-inflammatory and anti-bacterial activities of different types of turmeric (Curcuma longa) powder in Bangladesh. Journal of Agriculture and Food Research, 6, 100201.

    Article  CAS  Google Scholar 

  • Kisanthia, R., Hunt, A. J., Sherwood, J., Somsakeesit, L. O., & Phaosiri, C. (2021). Impact of conventional and sustainable solvents on the yield, selectivity, and recovery of curcuminoids from turmeric. ACS Sustainable Chemistry & Engineering, 10(1), 104–114.

    Article  Google Scholar 

  • Lakka, A., Grigorakis, S., Karageorgou, I., Batra, G., Kaltsa, O., Bozinou, E., & Makris, D. P. (2019). Saffron processing wastes as a bioresource of high-value added compounds: Development of a green extraction process for polyphenol recovery using a natural deep eutectic solvent. Antioxidants, 8(12), 586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laklaeng, S. N., & Kwanhian, W. (2020). Immunomodulation effect of Nypa fruticans palm vinegar. Walailak Journal of Science and Technology, 17(11), 1200–1210.

    Article  Google Scholar 

  • Lanari, D., Zadra, C., Negro, F., Njem, R., & Marcotullio, M. C. (2022). Influence of choline chloride-based NADES on the composition of Myristica fragrans Houtt. essential oil. Heliyon, 8(5), e09531.

  • Laosam, P., Panpipat, W., Chaijan, M., Roytrakul, S., Charoenlappanit, S., Panya, A., Phonsatta, N., Cheong, L. Z., & Yusakul, G. (2022). Molecular structures and in vitro bioactivities of enzymatically produced porcine placenta peptides fractionated by ultrafiltration. Food and Bioprocess Technology, 15(3), 669–682.

    Article  CAS  Google Scholar 

  • Lateh, L., Yuenyongsawad, S., Chen, H., & Panichayupakaranant, P. (2019). A green method for preparation of curcuminoid-rich Curcuma longa extract and evaluation of its anticancer activity. Pharmacognosy Magazine, 15(65), 730.

    Article  CAS  Google Scholar 

  • Le-Tan, H., Fauster, T., Haas, K., & Jaeger, H. (2022). Aqueous extraction of curcuminoids from Curcuma longa: Effect of cell disintegration pre-treatment and extraction condition. Food and Bioprocess Technology, 15(6), 1359–1373.

    Article  CAS  Google Scholar 

  • Li, Q., Sun, J., Mohammadtursun, N., Wu, J., Dong, J., & Li, L. (2019). Curcumin inhibits cigarette smoke-induced inflammation via modulating the PPARγ-NF-κB signaling pathway. Food & Function, 10(12), 7983–7994.

    Article  CAS  Google Scholar 

  • Lim, J., Nguyen, T. T. H., Pal, K., Kang, C. G., Park, C., Kim, S. W., & Kim, D. (2022). Phytochemical properties and functional characteristics of wild turmeric (Curcuma aromatica) fermented with Rhizopus oligosporus. Food Chemistry: X, 13, 100198.

    CAS  PubMed  Google Scholar 

  • Lin, S., Meng, X., Tan, C., Tong, Y., Wan, M., Wang, M., & Ma, Y. (2022). Composition and antioxidant activity of anthocyanins from Aronia melanocarpa extracted using an ultrasonic-microwave-assisted natural deep eutectic solvent extraction method. Ultrasonics Sonochemistry, 89, 106102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Li, J., Fu, R., Zhang, L., Wang, D., & Wang, S. (2019). Enhanced extraction of natural pigments from Curcuma longa L. using natural deep eutectic solvents. Industrial Crops and Products, 140, 111620.

  • Liu, Y., Chen, W., Xia, Q., Guo, B., Wang, Q., Liu, S., & Yu, H. (2017). Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. Chemsuschem, 10(8), 1692–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Friesen, J. B., McAlpine, J. B., Lankin, D. C., Chen, S. N., & Pauli, G. F. (2018). Natural deep eutectic solvents: Properties, applications, and perspectives. Journal of Natural Products, 81(3), 679–690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Cruz, R., Sandoval-Contreras, T., & Iñiguez-Moreno, M. (2023). Plant pigments: classification, extraction, and challenge of their application in the food industry. Food and Bioprocess Technology, 1–17.

  • Martinović, M., Krgović, N., Nešić, I., Žugić, A., & Tadić, V. M. (2022). Conventional vs. green extraction using natural deep eutectic solvents—Differences in the composition of soluble unbound phenolic compounds and antioxidant activity. Antioxidants, 11(11), 2295.

  • Nam, N. N., Do, H. D. K., Trinh, K. T. L., & Lee, N. Y. (2023). Design strategy and application of deep eutectic solvents for green synthesis of nanomaterials. Nanomaterials, 13(7), 1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obluchinskaya, E. D., Pozharitskaya, O. N., Zakharova, L. V., Daurtseva, A. V., Flisyuk, E. V., & Shikov, A. N. (2021). Efficacy of natural deep eutectic solvents for extraction of hydrophilic and lipophilic compounds from Fucus vesiculosus. Molecules, 26(14), 4198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozturk, B., Esteban, J., & Gonzalez-Miquel, M. (2018). Deterpenation of citrus essential oils using glycerol-based deep eutectic solvents. Journal of Chemical & Engineering Data, 63(7), 2384–2393.

    Article  CAS  Google Scholar 

  • Pavić, V., Flačer, D., Jakovljević, M., Molnar, M., & Jokić, S. (2019). Assessment of total phenolic content, in vitro antioxidant and antibacterial activity of Ruta graveolens L. extracts obtained by choline chloride based natural deep eutectic solvents. Plants, 8(3), 69.

  • Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., & Xu, R. (2021). Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Design, Development and Therapy, 15, 4503–4525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phetrit, R., Chaijan, M., Sorapukdee, S., & Panpipat, W. (2020). Characterization of nipa palm’s (Nypa fruticans Wurmb.) sap and syrup as functional food Ingredients. Sugar Tech22(1), 191–201.

  • Saengkrajang, W., Chaijan, M., & Panpipat, W. (2021). Physicochemical properties and nutritional compositions of nipa palm (Nypa fruticans Wurmb) syrup. NFS Journal, 23, 58–65.

    Article  CAS  Google Scholar 

  • Stupar, A., Šeregelj, V., Ribeiro, B. D., Pezo, L., Cvetanović, A., Mišan, A., & Marrucho, I. (2021). Recovery of β-carotene from pumpkin using switchable natural deep eutectic solvents. Ultrasonics Sonochemistry, 76, 105638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamprasit, P., Panpipat, W., & Chaijan, M. (2020). Improved radical scavenging activity and stabilised colour of nipa palm syrup after ultrasound-assisted glycation with glycine. International Journal of Food Science & Technology, 55(11), 3424–3431.

    Article  CAS  Google Scholar 

  • Wang, J., Jing, W., Tian, H., Liu, M., Yan, H., Bi, W., & Chen, D. D. Y. (2020a). Investigation of deep eutectic solvent-based microwave-assisted extraction and efficient recovery of natural products. ACS Sustainable Chemistry & Engineering, 8(32), 12080–12088.

    Article  CAS  Google Scholar 

  • Wang, S., Cao, M., Xu, S., Shi, J., Mao, X., Yao, X., & Liu, C. (2020b). Luteolin alters macrophage polarization to inhibit inflammation. Inflammation, 43, 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Wils, L., Leman-Loubière, C., Bellin, N., Clément-Larosière, B., Pinault, M., Chevalier, S., & Boudesocque-Delaye, L. (2021). Natural deep eutectic solvent formulations for spirulina: Preparation, intensification, and skin impact. Algal Research, 56, 102317.

    Article  Google Scholar 

  • Wu, J., Sun, X., Guo, X., Ji, M., Wang, J., Cheng, C., Chen, Li., Wen, C., & Zhang, Q. (2018). Physicochemical, antioxidant, in vitro release, and heat sealing properties of fish gelatin films incorporated with β-cyclodextrin/curcumin complexes for apple juice preservation. Food and Bioprocess Technology, 11, 447–461.

    Article  CAS  Google Scholar 

  • Wu, Y. X., Jiang, F. J., Liu, G., Wang, Y. Y., Gao, Z. Q., Jin, S. H., & Pang, Q. F. (2021). Dehydrocostus lactone attenuates methicillin-resistant Staphylococcus aureus-induced inflammation and acute lung injury via modulating macrophage polarization. International Journal of Molecular Sciences, 22(18), 9754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, B., Liu, X., & Gao, Y. (2009). Extraction optimization of bioactive compounds (crocin, geniposide and total phenolic compounds) from Gardenia (Gardenia jasminoides Ellis) fruits with response surface methodology. Innovative Food Science & Emerging Technologies, 10(4), 610–615.

    Article  CAS  Google Scholar 

  • Yusoff, N. A., Yam, M. F., Beh, H. K., Razak, K. N. A., Widyawati, T., Mahmud, R., Ahmad, M., & Asmawi, M. Z. (2015). Antidiabetic and antioxidant activities of Nypa fruticans Wurmb. vinegar sample from Malaysia. Asian Pacific Journal of Tropical Medicine8(8), 595–605.

  • Zhang, Y., Bian, S., Hu, J., Liu, G., Peng, S., Chen, H., & Zhu, H. (2022). Natural deep eutectic solvent-based microwave-assisted extraction of total flavonoid compounds from spent sweet potato (Ipomoea batatas L.) leaves: Optimization and antioxidant and bacteriostatic activity. Molecules, 27(18), 5985.

  • Zhang, J., Zheng, Y., Luo, Y., Du, Y., Zhang, X., & Fu, J. (2019). Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/TLR4/NF-κB pathways in BV2 cells. Molecular Immunology, 116, 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Wang, P., Zheng, W., Yu, G., Li, Z., She, Y., & Lee, M. (2019). Three-stage microwave extraction of cumin (Cuminum cyminum L.) seed essential oil with natural deep eutectic solvents. Industrial Crops and Products, 140, 111660.

Download references

Funding

This work was supported by the National Research Council of Thailand (NRCT) under the Royal Golden Jubilee PhD (RGJ) program, Thailand (Grant no. N41A640228).

Author information

Authors and Affiliations

Authors

Contributions

Tanatchapond Rodsamai: Conceptualization, Methodology, Investigation, Formal analysis, Data curation, Software, writing – original draft, Writing – review & editing. Manat Chaijan: Conceptualization, Methodology, Supervision, Writing – original draft, Writing – review & editing. Mudtorlep Nisoa: Methodology, Writing – review & editing. Natthawuddhi Donlao: Writing – review & editing. Saroat Rawdkuen: Writing – review & editing Warangkana Chunglok: Methodology, Writing – review & editing. Ling-Zhi Cheong: Writing – review & editing. Worawan Panpipat: Conceptualization, Methodology, Validation, Resources, Funding acquisition, Supervision, Project administration, Writing – original draft, Writing – review & editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Worawan Panpipat.

Ethics declarations

Ethics Approval

This study did not include any human subjects and animal experiments.

Conflict of Interest

The authors declare no conflict of interest. The foundations supported this study had no role in the study design, data collection, or analysis. The authors alone are responsible for the content and writing of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodsamai, T., Chaijan, M., Nisoa, M. et al. Improved Curcumin Recovery and In Vitro Biological Activity of Turmeric Extracts Using Nipa Palm Syrup– and Nipa Palm Vinegar–Based Natural Deep Eutectic Solvent (NADES) Hybridized with Microwave-Assisted Extraction. Food Bioprocess Technol (2023). https://doi.org/10.1007/s11947-023-03253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-023-03253-4

Keywords

Navigation