Skip to main content

Advertisement

Log in

A Novel Approach to Crosslink Gelatin Nanofibers Through Neutralization-Induced Maillard Reaction

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Improved mechanical strength and stability are key to expanding the use of biopolymers in a range of applications such as food packaging, tissue engineering, and wound healing. This can be achieved through crosslinking, a process that introduces chemical bonds between polymer chains in a nanofiber structure. In this particular investigation, gelatin nanofibers were produced using electrically assisted solution blow spinning. The study aimed to introduce and compare the effectiveness of the innovative neutralization-triggered Maillard crosslinking method with thermal crosslinking and classical Maillard crosslinking techniques. Several aspects, including mechanical properties, thermal stability, hydrophobicity, antibacterial and antioxidant activities, amino acid profile, as well as physical properties like FTIR spectra, SEM, TGA, water contact angle, and air permeability of the nanofiber webs, were examined. The outcomes revealed that the samples crosslinked via the novel method exhibited the highest hydrophobicity (with a water contact angle of 103.38°), a more rigid network structure with a tensile strength of 0.887 MPa, and 8.4 mm inhibition zones against E. coli and S. aureus. Overall, this research introduces a promising technique for modifying gelatin for food packaging, bioactive delivery, and biomedical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Ahmed, S., Sameen, D. E., Lu, R., Li, R., Dai, J., Qin, W., & Liu, Y. (2022). Research progress on antimicrobial materials for food packaging. Critical Reviews in Food Science and Nutrition, 62(11), 3088–3102.

    Article  CAS  PubMed  Google Scholar 

  • Alexandre, J. D. B., Barroso, T. L. C. T., Oliveira, M. D. A., Mendes, F. R. D. S., Costa, J. M. C. D., Moreira, R. D. A., & Furtado, R. F. (2019). Cross-linked coacervates of cashew gum and gelatin in the encapsulation of pequi oil. Ciência Rural49.

  • Aman Mohammadi, M., Ramezani, S., Hosseini, H., Mortazavian, A. M., Hosseini, S. M., & Ghorbani, M. (2021). Electrospun antibacterial and antioxidant zein/polylactic acid/hydroxypropyl methylcellulose nanofibers as an active food packaging system. Food and Bioprocess Technology, 14(8), 1529–1541. https://doi.org/10.1007/s11947-021-02654-7

    Article  CAS  Google Scholar 

  • Arfat, Y. A., Benjakul, S., Prodpran, T., Sumpavapol, P., & Songtipya, P. (2014). Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloids, 41, 265–273.

    Article  CAS  Google Scholar 

  • Arrieta, M. P., Peltzer, M. A., del Carmen Garrigós, M., & Jiménez, A. (2013). Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. Journal of Food Engineering, 114(4), 486–494.

    Article  CAS  Google Scholar 

  • Bahrami, A., Delshadi, R., Assadpour, E., Jafari, S. M., & Williams, L. (2020). Antimicrobial-loaded nanocarriers for food packaging applications. Advances in Colloid and Interface Science, 278, 102140. https://doi.org/10.1016/j.cis.2020.102140

  • Bilgin, Ö., Maviş, M. E., & Göksu-Gürsu, G. (2020). Amino acid content in muscle tissue of the brown meagre, Sciaena umbra Linnaeus, 1758 (Pisces: Sciaenidae) as candidate species for aquaculture in the Black Sea, Turkey. Pakistan Journal of Marine Sciences, 29(1). https://aquadocs.org/handle/1834/17946. Accessed 12 December 2022

  • Bodbodak, S., Shahabi, N., Mohammadi, M., Ghorbani, M., & Pezeshki, A. (2021). Development of a novel antimicrobial electrospun nanofiber based on polylactic acid/hydroxypropyl methylcellulose containing pomegranate peel extract for active food packaging. Food and Bioprocess Technology, 14(12), 2260–2272. https://doi.org/10.1007/s11947-021-02722-y

    Article  CAS  Google Scholar 

  • Chang, M. C., & Douglas, W. H. (2007). Cross-linkage of hydroxyapatite/gelatin nanocomposite using imide-based zero-length cross-linker. Journal of Materials Science: Materials in Medicine, 18(10), 2045–2051.

    CAS  PubMed  Google Scholar 

  • Craig, C. (2006). Kirk-Othmer encyclopedia of chemical technology and Ullmann’s encyclopedia of industrial chemistry. Issues in Science and Technology Librarianship, (46).

  • De Silva, R. T., Mantilaka, M., Ratnayake, S. P., Amaratunga, G. A. J., & de Silva, K. N. (2017). Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydrate polymers, 157, 739–747.

    Article  PubMed  Google Scholar 

  • Demina, T. S., Bolbasov, E. N., Peshkova, M. A., Efremov, Y. M., Bikmulina, P. Y., Birdibekova, A. V., et al. (2022). Electrospinning vs. electro-assisted solution blow spinning for fabrication of fibrous scaffolds for tissue engineering. Polymers, 14(23), 5254. https://doi.org/10.3390/polym14235254

  • Deng, L., Zhang, X., Li, Y., Que, F., Kang, X., Liu, Y., et al. (2018). Characterization of gelatin/zein nanofibers by hybrid electrospinning. Food Hydrocolloids, 75, 72–80. https://doi.org/10.1016/j.foodhyd.2017.09.011

    Article  CAS  Google Scholar 

  • Doğan, C., Doğan, N., Gungor, M., Eticha, A. K., & Akgul, Y. (2022a). Novel active food packaging based on centrifugally spun nanofibers containing lavender essential oil: Rapid fabrication, characterization, and application to preserve of minced lamb meat. Food Packaging and Shelf Life, 34, 100942. https://doi.org/10.1016/j.fpsl.2022.100942

  • Doğan, N., Doğan, C., Eticha, A. K., Gungor, M., & Akgul, Y. (2022b). Centrifugally spun micro-nanofibers based on lemon peel oil/gelatin as novel edible active food packaging: Fabrication, characterization, and application to prevent foodborne pathogens E. coli and S. aureus in cheese. Food Control, 139, 109081. https://doi.org/10.1016/j.foodcont.2022.109081

  • Etxabide, A., Kilmartin, P. A., Maté, J. I., Prabakar, S., Brimble, M., & Naffa, R. (2021). Analysis of advanced glycation end products in ribose-, glucose- and lactose-crosslinked gelatin to correlate the physical changes induced by Maillard reaction in films. Food Hydrocolloids, 117, 106736. https://doi.org/10.1016/j.foodhyd.2021.106736

  • Fathollahipour, S., Abouei Mehrizi, A., Ghaee, A., & Koosha, M. (2015). Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system. Journal of Biomedical Materials Research Part A, 103(12), 3852–3862.

    Article  CAS  PubMed  Google Scholar 

  • Frick, J. M., Ambrosi, A., Pollo, L. D., & Tessaro, I. C. (2018). Influence of glutaraldehyde crosslinking and alkaline post-treatment on the properties of chitosan-based films. Journal of Polymers and the Environment, 26(7), 2748–2757. https://doi.org/10.1007/s10924-017-1166-3

    Article  CAS  Google Scholar 

  • Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42–51. https://doi.org/10.1016/j.tifs.2013.10.008

    Article  CAS  Google Scholar 

  • Gómez-Estaca, J., Montero, P., Fernández-Martín, F., & Gómez-Guillén, M. C. (2009). Physico-chemical and film-forming properties of bovine-hide and tuna-skin gelatin: a comparative study. Journal of Food Engineering, 90(4), 480–486.

    Article  Google Scholar 

  • Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. E., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloids, 25(8), 1813–1827. https://doi.org/10.1016/j.foodhyd.2011.02.007

    Article  CAS  Google Scholar 

  • Gudmundsson, M. (2002). Rheological properties of fish gelatins. Journal of Food Science, 67(6), 2172–2176.

    Article  CAS  Google Scholar 

  • Hashmi, M., Ullah, S., Ullah, A., Saito, Y., Haider, M. K., Bie, X., et al. (2021). Carboxymethyl cellulose (CMC) based electrospun composite nanofiber mats for food packaging. Polymers, 13(2), 302. https://doi.org/10.3390/polym13020302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt, J. V., Bottoms, M. A., & Mitchinson, M. J. (1993). Oxidative alterations in the experimental glycation model of diabetes mellitus are due to protein-glucose adduct oxidation. Some fundamental differences in proposed mechanisms of glucose oxidation and oxidant production. Biochemical Journal, 291(2), 529–535.

  • Ibrahim Sallam, K. (2007). Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control, 18(5), 566–575. https://doi.org/10.1016/j.foodcont.2006.02.002

    Article  CAS  Google Scholar 

  • Jeevithan, E., Bao, B., Bu, Y., Zhou, Y., Zhao, Q., & Wu, W. (2014). Type II collagen and gelatin from silvertip shark (Carcharhinus albimarginatus) cartilage: Isolation, purification, physicochemical and antioxidant properties. Marine Drugs, 12(7), 3852–3873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, C., Li, L., Song, J., Li, Z., & Wu, H. (2021). Mass production of ultrafine fibers by a versatile solution blow spinning method. Accounts of Materials Research, 2(6), 432–446.

    Article  CAS  Google Scholar 

  • Jiang, S., Chen, Y., Duan, G., Mei, C., Greiner, A., & Agarwal, S. (2018). Electrospun nanofiber reinforced composites: a review. Polymer Chemistry, 9(20), 2685–2720. https://doi.org/10.1039/C8PY00378E

    Article  CAS  Google Scholar 

  • Karim, M., Fathi, M., & Soleimanian-Zad, S. (2021). Nanoencapsulation of cinnamic aldehyde using zein nanofibers by novel needle-less electrospinning: production, characterization and their application to reduce nitrite in sausages. Journal of Food Engineering, 288, 110140.

    Article  CAS  Google Scholar 

  • Kchaou, H., Benbettaïeb, N., Jridi, M., Abdelhedi, O., Karbowiak, T., Brachais, C.-H., et al. (2018). Enhancement of structural, functional and antioxidant properties of fish gelatin films using Maillard reactions. Food Hydrocolloids, 83, 326–339. https://doi.org/10.1016/j.foodhyd.2018.05.011

    Article  CAS  Google Scholar 

  • Kchaou, H., Benbettaieb, N., Jridi, M., Nasri, M., & Debeaufort, F. (2019). Influence of Maillard reaction and temperature on functional, structure and bioactive properties of fish gelatin films. Food Hydrocolloids, 97, 105196. https://doi.org/10.1016/j.foodhyd.2019.105196

  • Ki, C. S., Baek, D. H., Gang, K. D., Lee, K. H., Um, I. C., & Park, Y. H. (2005). Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer, 46(14), 5094–5102.

    Article  CAS  Google Scholar 

  • Ko, J. S., Yoon, K., Ki, C. S., Kim, H. J., Bae, D. G., Lee, K. H., et al. (2013). Effect of degumming condition on the solution properties and electrospinnablity of regenerated silk solution. International journal of biological macromolecules, 55, 161–168.

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk, D., Szymanowska, U., Skrzypek, T., Basiura-Cembala, M., Bartkowiak, A., & Łupina, K. (2022). A Comprehensive study on gelatin- and whey protein isolate-based edible films as carriers of fireweed (Epilobium angustifolium L.) extract. Food and Bioprocess Technology, 15(11), 2547–2561. https://doi.org/10.1007/s11947-022-02898-x

  • Kwak, H. W., Park, J., Yun, H., Jeon, K., & Kang, D.-W. (2021). Effect of crosslinkable sugar molecules on the physico-chemical and antioxidant properties of fish gelatin nanofibers. Food Hydrocolloids, 111, 106259. https://doi.org/10.1016/j.foodhyd.2020.106259

  • Laha, A., Yadav, S., Majumdar, S., & Sharma, C. S. (2016). In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers. Biochemical Engineering Journal, 105, 481–488.

    Article  CAS  Google Scholar 

  • Li, L., Kang, W., Zhao, Y., Li, Y., Shi, J., & Cheng, B. (2015). Preparation of flexible ultra-fine Al2O3 fiber mats via the solution blowing method. Ceramics International, 41(1), 409–415.

    Article  CAS  Google Scholar 

  • Liu, G., Gu, Z., Hong, Y., Cheng, L., & Li, C. (2017). Electrospun starch nanofibers: recent advances, challenges, and strategies for potential pharmaceutical applications. Journal of Controlled Release, 252, 95–107.

    Article  CAS  PubMed  Google Scholar 

  • Morsy, R., Hosny, M., Reicha, F., & Elnimr, T. (2017a). Developing a potential antibacterial long-term degradable electrospun gelatin-based composites mats for wound dressing applications. Reactive and Functional Polymers, 114, 8–12.

  • Morsy, Reda, Hosny, M., Reicha, F., & Elnimr, T. (2017b). Developing and physicochemical evaluation of cross-linked electrospun gelatin–glycerol nanofibrous membranes for medical applications. Journal of Molecular Structure, 1135, 222–227.

  • Mottram, D. S. (2007). The Maillard reaction: source of flavour in thermally processed foods. In R. G. Berger (Ed.), Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability (pp. 269–283). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-49339-6_12

  • Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004a). Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food hydrocolloids, 18(4), 581–592.

  • Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004b). Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food chemistry, 86(3), 325–332.

  • Noorbakhsh-Soltani, S. M., Zerafat, M. M., & Sabbaghi, S. (2018). A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydrate Polymers, 189, 48–55. https://doi.org/10.1016/j.carbpol.2018.02.012

    Article  CAS  PubMed  Google Scholar 

  • Riahi, Z., Priyadarshi, R., Rhim, J.-W., & Bagheri, R. (2021). Gelatin-based functional films integrated with grapefruit seed extract and TiO2 for active food packaging applications. Food Hydrocolloids, 112, 106314. https://doi.org/10.1016/j.foodhyd.2020.106314

  • Rufián-Henares, J. A., & de la Cueva, S. P. (2009). Antimicrobial activity of coffee melanoidins—a study of their metal-chelating properties. Journal of Agricultural and Food Chemistry, 57(2), 432–438. https://doi.org/10.1021/jf8027842

    Article  CAS  PubMed  Google Scholar 

  • Saadat, S., Emam-Djomeh, Z., & Askari, G. (2021). Antibacterial and antioxidant gelatin nanofiber scaffold containing ethanol extract of pomegranate peel: design, characterization and in vitro assay. Food and Bioprocess Technology, 14(5), 935–944. https://doi.org/10.1007/s11947-021-02616-z

    Article  CAS  Google Scholar 

  • Saurabh, C. K., Mustapha, A., Masri, M. M., Owolabi, A. F., Syakir, M. I., Dungani, R., et al. (2016). Isolation and characterization of cellulose nanofibers from Gigantochloa scortechinii as a reinforcement material. Journal of Nanomaterials, 2016, e4024527. https://doi.org/10.1155/2016/4024527

  • Şen, Ö., & Culha, M. (2016). Boron nitride nanotubes included thermally cross-linked gelatin–glucose scaffolds show improved properties. Colloids and Surfaces B: Biointerfaces, 138, 41–49.

    Article  PubMed  Google Scholar 

  • Serafim, A., Cecoltan, S., Lungu, A., Vasile, E., Iovu, H., & Stancu, I. C. (2015). Electrospun fish gelatin fibrous scaffolds with improved bio-interactions due to carboxylated nanodiamond loading. RSC advances, 5(116), 95467–95477.

    Article  CAS  Google Scholar 

  • Siimon, K., Reemann, P., Poder, A., Pook, M., Kangur, T., Kingo, K., et al. (2014). Effect of glucose content on thermally cross-linked fibrous gelatin scaffolds for tissue engineering. Materials Science and Engineering: C, 42, 538–545.

    Article  CAS  PubMed  Google Scholar 

  • Siimon, K., Siimon, H., & Järvekülg, M. (2015). Mechanical characterization of electrospun gelatin scaffolds cross-linked by glucose. Journal of Materials Science: Materials in Medicine, 26(1), 37. https://doi.org/10.1007/s10856-014-5375-1

    Article  CAS  Google Scholar 

  • Sizeland, K. H., Hofman, K. A., Hallett, I. C., Martin, D. E., Potgieter, J., Kirby, N. M., et al. (2018). Nanostructure of electrospun collagen: Do electrospun collagen fibers form native structures? Materialia, 3, 90–96.

    Article  CAS  Google Scholar 

  • Sompie, M., Surtijono, S. E., Pontoh, J. H. W., & Lontaan, N. N. (2015). The effects of acetic acid concentration and extraction temperature on physical and chemical properties of pigskin gelatin. Procedia Food Science, 3, 383–388. https://doi.org/10.1016/j.profoo.2015.01.042

    Article  Google Scholar 

  • Stevenson, M., Long, J., Seyfoddin, A., Guerrero, P., de la Caba, K., & Etxabide, A. (2020). Characterization of ribose-induced crosslinking extension in gelatin films. Food Hydrocolloids, 99, 105324.

    Article  CAS  Google Scholar 

  • Sun, X., & Udenigwe, C. C. (2020). Chemistry and biofunctional significance of bioactive peptide interactions with food and gut components. Journal of Agricultural and Food Chemistry, 68(46), 12972–12977. https://doi.org/10.1021/acs.jafc.9b07559

    Article  CAS  PubMed  Google Scholar 

  • Syahida, S. N., Ismail-Fitry, M. R., Ainun, Z. M. A., & Hanani, Z. A. N. (2020). Effects of palm wax on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application. Food Packaging and Shelf Life, 23, 100437.

    Article  Google Scholar 

  • Tan, J., Liu, T., Yao, Y., Wu, N., Du, H., Xu, M., et al. (2021). Changes in physicochemical and antioxidant properties of egg white during the Maillard reaction induced by alkali. LWT, 143, 111151. https://doi.org/10.1016/j.lwt.2021.111151

  • Tavassoli-Kafrani, E., Goli, S. A. H., & Fathi, M. (2017). Fabrication and characterization of electrospun gelatin nanofibers crosslinked with oxidized phenolic compounds. International journal of biological macromolecules, 103, 1062–1068.

    Article  CAS  PubMed  Google Scholar 

  • Tavassoli-Kafrani, E., Goli, S. A. H., & Fathi, M. (2018). Encapsulation of orange essential oil using cross-linked electrospun gelatin nanofibers. Food and Bioprocess Technology, 11(2), 427–434. https://doi.org/10.1007/s11947-017-2026-9

    Article  CAS  Google Scholar 

  • Tonglairoum, P., Chuchote, T., Ngawhirunpat, T., Rojanarata, T., & Opanasopit, P. (2014). Encapsulation of plai oil/2-hydroxypropyl-β-cyclodextrin inclusion complexes in polyvinylpyrrolidone (PVP) electrospun nanofibers for topical application. Pharmaceutical development and technology, 19(4), 430–437.

    Article  CAS  PubMed  Google Scholar 

  • Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food chemistry, 134(3), 1571–1579.

    Article  CAS  PubMed  Google Scholar 

  • Torres-Giner, S., Gimenez, E., & Lagaron, J. M. (2008). Characterization of the morphology and thermal properties of zein prolamine nanostructures obtained by electrospinning. Food Hydrocolloids, 22(4), 601–614.

    Article  CAS  Google Scholar 

  • Wang, Y., Khan, M. A., Chen, K., Zhang, L., & Chen, X. (2023). Electrospinning of natural biopolymers for innovative food applications: a review. Food and Bioprocess Technology, 16(4), 704–725. https://doi.org/10.1007/s11947-022-02896-z

    Article  CAS  Google Scholar 

  • Xu, Y., Yuan, D., Guo, Y., Chen, S., Lin, W., Long, Y., et al. (2022). Superhydrophilic and polyporous nanofibrous membrane with excellent photocatalytic activity and recyclability for wastewater remediation under visible light irradiation. Chemical Engineering Journal, 427, 131685. https://doi.org/10.1016/j.cej.2021.131685

  • Yang, W., Bian, H., Jiao, L., Wu, W., Deng, Y., & Dai, H. (2017). High wet-strength, thermally stable and transparent TEMPO-oxidized cellulose nanofibril film via cross-linking with poly-amide epichlorohydrin resin. RSC Advances, 7(50), 31567–31573. https://doi.org/10.1039/C7RA05009G

    Article  CAS  Google Scholar 

  • Yao, C.-H., Lee, C.-Y., Huang, C.-H., Chen, Y.-S., & Chen, K.-Y. (2017). Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. Materials Science and Engineering: C, 79, 533–540.

    Article  CAS  PubMed  Google Scholar 

  • Yavari Maroufi, L., Norouzi, R., Ramezani, S., & Ghorbani, M. (2023). Novel electrospun nanofibers based on gelatin/oxidized xanthan gum containing propolis reinforced by Schiff base cross-linking for food packaging. Food Chemistry, 416, 135806. https://doi.org/10.1016/j.foodchem.2023.135806

  • Zhang, J., Liu, L., Si, Y., Yu, J., & Ding, B. (2021). Rational design of electrospun nanofibrous materials for oil/water emulsion separation. Materials Chemistry Frontiers, 5(1), 97–128. https://doi.org/10.1039/D0QM00436G

    Article  CAS  Google Scholar 

  • Zhang, Y. Z., Venugopal, J., Huang, Z.-M., Lim, C. T., & Ramakrishna, S. (2006). Crosslinking of the electrospun gelatin nanofibers. Polymer, 47(8), 2911–2917.

    Article  CAS  Google Scholar 

  • Zhao, N., Chai, Y., Wang, T., Wang, K., Jiang, J., & Yang, H. (2019). Preparation and physical/chemical modification of galactomannan film for food packaging. International Journal of Biological Macromolecules, 137, 1060–1067. https://doi.org/10.1016/j.ijbiomac.2019.07.048

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Karabuk University under grant number [KBUBAP-21-ABP-031]. The views and opinions expressed in this article are those of the author(s) and do not necessarily reflect the official policy or position of the funding agency or organization.

Author information

Authors and Affiliations

Authors

Contributions

Salih Birhanu Ahmed: writing—original draft, investigation, methodology, writing—review and editing. Cemhan Dogan: writing—original draft, investigation, visualization, resources. Nurcan Dogan: writing—original draft, investigation, visualization, resources. Yasin Akgul: writing—review and editing the original draft, investigation, and methodology.

Corresponding author

Correspondence to Yasin Akgul.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 611 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.B., Doğan, N., Doğan, C. et al. A Novel Approach to Crosslink Gelatin Nanofibers Through Neutralization-Induced Maillard Reaction. Food Bioprocess Technol 17, 489–503 (2024). https://doi.org/10.1007/s11947-023-03146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03146-6

Keywords

Navigation