Skip to main content
Log in

Influence of Paprika Oleoresin Addition on the Structural Properties of Soy Protein Isolate Films

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This work evaluated the effect of adding an emulsion containing paprika oleoresin on the properties of soy protein isolate films. Different proportions of the dispersed and continuous phases of the emulsion were studied to define the most stable emulsion to be added to the film. Three films were developed, containing soy protein isolate and glycerol (control film), and added paprika oleoresin emulsion in higher and lower concentrations (0.25% POR and 0.50% POR). The films were evaluated for colorimetric, structural, thermal properties, and molecular interactions. The addition of paprika oleoresin positively impacted the analyzed properties. Films with added oleoresin were more attractive, opaque and have a more resistant barrier to UV/Vis exposure. The emulsion was homogeneously and continuously dispersed, and the films were considered resistant due to the amorphous crystallinity pattern. Characteristic peaks of paprika oleoresin were evidenced by molecular interaction analysis. These results are promising for applications of the films in food products, highlighting the wrapping of meat products such as sausages or bologna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Acosta-Domínguez, L., Cocotle-Ronzón, Y., Alamilla-Beltrán, L., & Hernandez-Martinez, E. (2021). Effect of a cryogenic treatment in the microstructure, functional and flow properties of soy protein isolate. Food Hydrocolloids, 119, 106871. https://doi.org/10.1016/j.foodhyd.2021.106871

  • Alexandre, E. M. C., Lourenço, R. V., Bittante, A. M. Q. B., Moraes, I. C. F., & Sobral, P. J. A. (2016). Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packaging and Shelf Life, 10, 87–96. https://doi.org/10.1016/j.fpsl.2016.10.004

  • Belloch, C., Neef, A., Salafia, C., López-Diez, J. J., & Flores, M. (2021). Microbiota and volatilome of dry-cured pork loins manufactured with paprika and reduced concentration of nitrite and nitrate. Food Research International, 149, 110691. https://doi.org/10.1016/j.foodres.2021.110691

  • Bergo, P., & Sobral, P. J. A. (2007). Effects of plasticizer on physical properties of pigskin gelatin films. Food Hydrocolloids, 21(8), 1285–1289. https://doi.org/10.1016/j.foodhyd.2006.09.014

    Article  CAS  Google Scholar 

  • Berke, T. G., & Shieh, S. C. (2012). Capsicum cultivars. In Handbook of Herbs and Spices (pp. 116–130). Elsevier. https://doi.org/10.1533/9780857095671.116

  • Binsi, P. K., Ravishankar, C. N., & Srinivasa Gopal, T. K. (2013). Development and characterization of an edible composite film based on chitosan and virgin coconut oil with improved moisture sorption properties. Journal of Food Science, 78(4), E526–E534. https://doi.org/10.1111/1750-3841.12084

    Article  CAS  PubMed  Google Scholar 

  • Bitencourt, C. M., Fávaro-Trindade, C. S., Sobral, P. J. A., & Carvalho, R. A. (2014). Gelatin-based films additivated with curcuma ethanol extract: Antioxidant activity and physical properties of films. Food Hydrocolloids, 40, 145–152. https://doi.org/10.1016/j.foodhyd.2014.02.014

    Article  CAS  Google Scholar 

  • Carpiné, D., Dagostin, J. L. A., Bertan, L. C., & Mafra, M. R. (2015). Development and characterization of soy protein isolate emulsion-based edible films with added coconut oil for olive oil packaging: Barrier, mechanical, and thermal properties. Food and Bioprocess Technology, 8(8), 1811–1823. https://doi.org/10.1007/s11947-015-1538-4

    Article  CAS  Google Scholar 

  • Carpiné, D., Dagostin, J. L. A., de Andrade, E. F., Bertan, L. C., & Mafra, M. R. (2016). Effect of the natural surfactant Yucca schidigera extract on the properties of biodegradable emulsified films produced from soy protein isolate and coconut oil. Industrial Crops and Products, 83, 364–371. https://doi.org/10.1016/j.indcrop.2016.01.014

    Article  CAS  Google Scholar 

  • Chakravartula, S. S. N., Lourenço, R. V., Balestra, F., Bittante, A. M. Q. B., Sobral, P. J. do A., & Rosa, M. D. (2020). Influence of pitanga (Eugenia uniflora L.) leaf extract and/or natamycin on properties of cassava starch/chitosan active films. Food Packaging and Shelf Life, 24, 100498. https://doi.org/10.1016/j.fpsl.2020.100498

  • Chen, M., Wang, L., Xie, B., Ma, A., Hu, K., Zheng, C., et al. (2022). Effects of high-pressure treatments (ultra-high hydrostatic pressure and high-pressure homogenization) on bighead carp (Aristichthys nobilis) myofibrillar protein native state and its hydrolysate. Food and Bioprocess Technology, 15(10), 2252–2266. https://doi.org/10.1007/s11947-022-02878-1

    Article  CAS  Google Scholar 

  • Dammak, I., de Carvalho, R. A., Trindade, C. S. F., Lourenço, R. V., & do Amaral Sobral, P. J. (2017). Properties of active gelatin films incorporated with rutin-loaded nanoemulsions. International Journal of Biological Macromolecules, 98, 39–49. https://doi.org/10.1016/j.ijbiomac.2017.01.094

    Article  CAS  PubMed  Google Scholar 

  • Damodaran, S., Parkin, K. L., & Fennema, O. R. (2010). Química de Alimentos de Fennema - 4ª ed. - Editora Artmed.

  • Ekhlas, E. A. K., Zahra, A. N. H., & Jenan, A.-A.A. (2016). FT-IR identification of capsaicin from callus and seedling of chilli pepper plants Capsicum annuum L. in vitro. International Journal of Multidisciplinary and Current Research, 4, 1144–1146.

    Google Scholar 

  • Ferraz, M. C., Procópio, F. R., de Figueiredo Furtado, G., Munhoz Moya, A. M. T., Cazarin, C. B. B., & Hubinger, M. D. (2021). Cinnamon and paprika oleoresin emulsions: A study of physicochemical stability and antioxidant synergism. Food Research International, 150, 110777. https://doi.org/10.1016/j.foodres.2021.110777

  • Galus, S. (2018). Functional properties of soy protein isolate edible films as affected by rapeseed oil concentration. Food Hydrocolloids, 85, 233–241. https://doi.org/10.1016/j.foodhyd.2018.07.026

    Article  CAS  Google Scholar 

  • Galvin-King, P., Haughey, S. A., & Elliott, C. T. (2020). The detection of substitution adulteration of paprika with spent paprika by the application of molecular spectroscopy tools. Foods, 9(7), 944. https://doi.org/10.3390/foods9070944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, P., Yu, Q., Feng, X., Ma, C., & Kan, J. (2022). Optimization of accelerated solvent extraction of paprika oleoresin and its effect on capsaicinoid and carotenoid composition. Journal of Food Composition and Analysis, 110, 104589. https://doi.org/10.1016/j.jfca.2022.104589

  • Hu, Y., Shi, L., Ren, Z., Hao, G., Chen, J., & Weng, W. (2021). Characterization of emulsion films prepared from soy protein isolate at different preheating temperatures. Journal of Food Engineering, 309, 110697. https://doi.org/10.1016/j.jfoodeng.2021.110697

  • Jimenez-Escobar, M. P., Pascual-Mathey, L. I., Beristain, C. I., Flores-Andrade, E., Jiménez, M., & Pascual-Pineda, L. A. (2020). In vitro and in vivo antioxidant properties of paprika carotenoids nanoemulsions. LWT, 118, 108694. https://doi.org/10.1016/j.lwt.2019.108694

  • Jincheng, W., & Sihao, C. (2010). Preparation and characterization of microcapsules containing capsaicin. Journal of Applied Polymer Science, 116(4), 2234–2241. https://doi.org/10.1002/app.31684

    Article  CAS  Google Scholar 

  • Kim, J.-S., An, C. G., Park, J.-S., Lim, Y. P., & Kim, S. (2016). Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods. Food Chemistry, 201, 64–71. https://doi.org/10.1016/j.foodchem.2016.01.041

    Article  CAS  PubMed  Google Scholar 

  • Kitabatake, N., Tahara, M., & Doi, E. (1989). Denaturation temperature of soy protein under low moisture conditions. Agricultural and Biological Chemistry, 53(4), 1201–1202. https://doi.org/10.1271/bbb1961.53.1201

    Article  CAS  Google Scholar 

  • Kumar, A. V., Hasan, M., Mangaraj, S., Pravitha, M., Verma, D. K., & Srivastav, P. P. (2022). Trends in edible packaging films and its prospective future in food: A review. Applied Food Research, 2(1), 100118. https://doi.org/10.1016/j.afres.2022.100118

  • Liu, F., Liang, X., Yan, J., Zhao, S., Li, S., Liu, X., et al. (2022). Tailoring the properties of double-crosslinked emulsion gels using structural design principles: Physical characteristics, stability, and delivery of lycopene. Biomaterials, 280, 121265. https://doi.org/10.1016/j.biomaterials.2021.121265

  • Lucas, E. F., Soares, B. G., & Monteiro, E. C. (2001). Caracterização de polímeros determinação de peso molecular e análise térmica - 1ª ed. - E-Papers.

  • Matheus, J. R. V., de Assis, R. M., Correia, T. R., da Costa Marques, M. R., Leite, M. C. A. M., Pelissari, F. M., et al. (2021). Biodegradable and edible film based on persimmon (Diospyros kaki L.) used as a lid for minimally processed vegetables packaging. Food and Bioprocess Technology, 14(4), 765–779. https://doi.org/10.1007/s11947-021-02595-1

  • Ma, W., Tang, C.-H., Yin, S.-W., Yang, X.-Q., Wang, Q., Liu, F., & Wei, Z.-H. (2012). Characterization of gelatin-based edible films incorporated with olive oil. Food Research International, 49(1), 572–579. https://doi.org/10.1016/j.foodres.2012.07.037

    Article  CAS  Google Scholar 

  • McClements, D. J. (2015). Food emulsions. CRC Press. https://doi.org/10.1201/b18868

    Article  Google Scholar 

  • McHugh, T. H. (1996). Effects of Macromolecular Interactions on the Permeability of Composite Edible Films. Macromolecular Interactions in Food Technology, 134–144. https://doi.org/10.1021/bk-1996-0650.ch011

    Google Scholar 

  • Medeiros, J. A. S., Blick, A. P., Galindo, M. V., Alvim, I. D., Yamashita, F., Ueno, C. T., et al. (2019). Incorporation of oregano essential oil microcapsules in starch-poly (butylene adipate co-terephthalate) (PBAT) films. Macromolecular Symposia, 383(1), 1800052. https://doi.org/10.1002/masy.201800052

    Article  CAS  Google Scholar 

  • Melgar-Lalanne, G., Hernández-Álvarez, A. J., Jiménez-Fernández, M., & Azuara, E. (2017). Oleoresins from Capsicum spp.: Extraction methods and bioactivity. Food and Bioprocess Technology, 10(1), 51–76. https://doi.org/10.1007/s11947-016-1793-z

  • Minguez-Mosquera, M. Isabel., & Hornero-Mendez, Damaso. (1993). Separation and quantification of the carotenoid pigments in red peppers (Capsicum annuum L.), paprika, and oleoresin by reversed-phase HPLC. Journal of Agricultural and Food Chemistry, 41(10), 1616–1620. https://doi.org/10.1021/jf00034a018

  • Mo, X., & Sun, X. (2002). Plasticization of soy protein polymer by polyol-based plasticizers. Journal of the American Oil Chemists’ Society, 79(2), 197–202. https://doi.org/10.1007/s11746-002-0458-x

    Article  CAS  Google Scholar 

  • Mun, S., Decker, E. A., & McClements, D. J. (2007). Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase. Food Research International, 40(6), 770–781. https://doi.org/10.1016/j.foodres.2007.01.007

    Article  CAS  Google Scholar 

  • Ochoa, T. A., Almendárez, B. E. G., Reyes, A. A., Pastrana, D. M. R., López, G. F. G., Belloso, O. M., & González, C. R.-. (2017). Design and characterization of corn starch edible films including beeswax and natural antimicrobials. Food and Bioprocess Technology, 10(1), 103–114. https://doi.org/10.1007/s11947-016-1800-4

    Article  CAS  Google Scholar 

  • Otoni, C. G., Pontes, S. F. O., Medeiros, E. A. A., & Soares, N. F. F. (2014). Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread. Journal of Agricultural and Food Chemistry, 62(22), 5214–5219. https://doi.org/10.1021/jf501055f

    Article  CAS  PubMed  Google Scholar 

  • Paglione, I. S., Galindo, M. V., Medeiros, J. A. S. de, Yamashita, F., Alvim, I. D., Grosso, C. R. F., et al. (2019). Comparative study of the properties of soy protein concentrate films containing free and encapsulated oregano essential oil. Food Packaging and Shelf Life, 22, 100419. https://doi.org/10.1016/j.fpsl.2019.100419

  • Patel, A. V., Thomas, M., Patel, A., Panchal, T., Thomas, M., Gupte, A., & Patel, J. (2016). Preparation and characterization of biodegradable packaging film using groundnut protein isolate. In 24th European Biomass Conference and Exhibition. https://doi.org/10.5071/24thEUBCE20163BO

  • Poverenov, E., Rutenberg, R., Danino, S., Horev, B., & Rodov, V. (2014). Gelatin-chitosan composite films and edible coatings to enhance the quality of food products: Layer-by-layer vs. blended formulations. Food and Bioprocess Technology, 7(11), 3319–3327. https://doi.org/10.1007/s11947-014-1333-7

  • Procópio, F. R., Ferraz, M. C., do Prado-Silva, L., Paulino, B. N., Sant’Ana, A. S., Pastore, G. M., et al. (2022a). Antifungal synergistic effect of paprika and cinnamon oleoresins and their coencapsulation by spray chilling technique to produce a carotenoid-cinnamaldehyde-rich food powder. Food and Bioprocess Technology, 15(12), 2826–2838. https://doi.org/10.1007/s11947-022-02918-w

    Article  CAS  Google Scholar 

  • Procópio, F. R., Ferraz, M. C., Paulino, B. N., Sobral, P. J. A., & Hubinger, M. D. (2022b). Spice oleoresins as value-added ingredient for food industry: Recent advances and perspectives. Trends in Food Science & Technology, 122, 123–139. https://doi.org/10.1016/j.tifs.2022.02.010

    Article  CAS  Google Scholar 

  • Rascón, M. P., Beristain, C. I., García, H. S., & Salgado, M. A. (2011). Carotenoid retention and storage stability of spray-dried encapsulated paprika oleoresin using gum Arabic and soy protein isolate as wall materials. LWT - Food Science and Technology, 44(2), 549–557. https://doi.org/10.1016/j.lwt.2010.08.021

    Article  CAS  Google Scholar 

  • Reátegui, J. L. P., Barrales, F. M., Rezende, C. A., Queiroga, C. L., & Martínez, J. (2017). Production of copaiba oleoresin particles from emulsions stabilized with modified starches. Industrial Crops and Products, 108, 128–139. https://doi.org/10.1016/j.indcrop.2017.06.027

    Article  CAS  Google Scholar 

  • Reyes, L. M., Landgraf, M., & Sobral, P. J. A. (2021). Gelatin-based films activated with red propolis ethanolic extract and essential oils. Food Packaging and Shelf Life, 27, 100607. https://doi.org/10.1016/j.fpsl.2020.100607

  • Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2021). Preparation and incorporation of functional ingredients in edible films and coatings. Food and Bioprocess Technology, 14(2), 209–231. https://doi.org/10.1007/s11947-020-02528-4

    Article  CAS  Google Scholar 

  • Saberi, B., Vuong, Q., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2017). Physical, barrier, and antioxidant properties of pea starch-guar gum biocomposite edible films by incorporation of natural plant extracts. Food and Bioprocess Technology, 10(12), 2240–2250. https://doi.org/10.1007/s11947-017-1995-z

    Article  CAS  Google Scholar 

  • Sakuno, M. M., Matsumoto, S., Kawai, S., Taihei, K., & Matsumura, Y. (2008). Adsorption and structural change of β-lactoglobulin at the diacylglycerol−water interface. Langmuir, 24(20), 11483–11488. https://doi.org/10.1021/la8018277

    Article  CAS  PubMed  Google Scholar 

  • Sanches, M. A. R., Camelo-Silva, C., Tussolini, L., Tussolini, M., Zambiazi, R. C., & Pertuzatti, P. B. (2021). Development, characterization and optimization of biopolymers films based on starch and flour from jabuticaba (Myrciaria cauliflora) peel. Food Chemistry, 343, 128430. https://doi.org/10.1016/j.foodchem.2020.128430

  • Sharma, N., Kaur, G., & Khatkar, S. K. (2021). Optimization of emulsification conditions for designing ultrasound assisted curcumin loaded nanoemulsion: Characterization, antioxidant assay and release kinetics. LWT, 141, 110962. https://doi.org/10.1016/j.lwt.2021.110962

  • Shen, R., Lin, D., Liu, Z., Zhai, H., & Yang, X. (2021). Fabrication of bacterial cellulose nanofibers/soy protein isolate colloidal particles for the stabilization of high internal phase pickering emulsions by anti-solvent precipitation and their application in the delivery of curcumin. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.734620

  • Shi, W.-J., Tang, C.-H., Yin, S.-W., Yin, Y., Yang, X.-Q., Wu, L.-Y., & Zhao, Z.-G. (2016). Development and characterization of novel chitosan emulsion films via pickering emulsions incorporation approach. Food Hydrocolloids, 52, 253–264. https://doi.org/10.1016/j.foodhyd.2015.07.008

    Article  CAS  Google Scholar 

  • Silva, R. S., Santos, B. M. M., Fonseca, G. G., Prentice, C., & Cortez-Vega, W. R. (2020). Analysis of hybrid sorubim protein films incorporated with glycerol and clove essential oil for packaging applications. Journal of Polymers and the Environment, 28(2), 421–432. https://doi.org/10.1007/s10924-019-01608-7

    Article  CAS  Google Scholar 

  • Sobral, P. J. A., & Habitante, A. M. Q. B. (2001). Phase transitions of pigskin gelatin. Food Hydrocolloids, 15(4–6), 377–382. https://doi.org/10.1016/S0268-005X(01)00060-1

    Article  CAS  Google Scholar 

  • Souza, K. C., Correa, L. G., Silva, T. B. V., Moreira, T. F. M., Oliveira, A., Sakanaka, L. S., et al. (2020). Soy protein isolate films incorporated with Pinhão (Araucaria angustifolia (Bertol.) Kuntze) extract for potential use as edible oil active packaging. Food and Bioprocess Technology, 13(6), 998–1008. https://doi.org/10.1007/s11947-020-02454-5

  • Tang, C.-H., Xiao, M.-L., Chen, Z., Yang, X.-Q., & Yin, S.-W. (2009). Properties of cast films of vicilin-rich protein isolates from Phaseolus legumes: Influence of heat curing. LWT - Food Science and Technology, 42(10), 1659–1666. https://doi.org/10.1016/j.lwt.2009.05.020

    Article  CAS  Google Scholar 

  • Tessaro, L., Lourenço, R. V., Martelli-Tosi, M., & do Amaral Sobral, P. J. (2021). Gelatin/chitosan based films loaded with nanocellulose from soybean straw and activated with “Pitanga” (Eugenia uniflora L.) leaf hydroethanolic extract in W/O/W emulsion. International Journal of Biological Macromolecules, 186, 328–340. https://doi.org/10.1016/j.ijbiomac.2021.07.039

    Article  CAS  PubMed  Google Scholar 

  • Tirgarian, B., Farmani, J., & Milani, J. M. (2023). Edible oleofilms with high vegetable oil content obtained from novel soy protein isolate/gelatin/chitosan nanofiber emulgels. Food Hydrocolloids, 134, 108082. https://doi.org/10.1016/j.foodhyd.2022.108082

  • Valencia, G. A., Lourenço, R. V., Bittante, A. M. Q. B., & do Amaral Sobral, P. J. (2016). Physical and morphological properties of nanocomposite films based on gelatin and Laponite. Applied Clay Science, 124–125, 260–266. https://doi.org/10.1016/j.clay.2016.02.023

    Article  CAS  Google Scholar 

  • Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

    Article  CAS  Google Scholar 

  • Villalobos, R., Chanona, J., Hernández, P., Gutiérrez, G., & Chiralt, A. (2005). Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hydrocolloids, 19(1), 53–61. https://doi.org/10.1016/j.foodhyd.2004.04.014

    Article  CAS  Google Scholar 

  • Xue, F., Gu, Y., Wang, Y., Li, C., & Adhikari, B. (2019). Encapsulation of essential oil in emulsion based edible films prepared by soy protein isolate-gum acacia conjugates. Food Hydrocolloids, 96, 178–189. https://doi.org/10.1016/j.foodhyd.2019.05.014

    Article  CAS  Google Scholar 

  • Yazgan, H. (2022). Antimicrobial activities of emulsion-based edible solutions incorporating lemon essential oil and sodium caseinate against some food-borne bacteria. Journal of Food Science and Technology, 59(12), 4695–4705. https://doi.org/10.1007/s13197-022-05551-9

    Article  CAS  PubMed  Google Scholar 

  • Ye, Q., Han, Y., Zhang, J., Zhang, W., Xia, C., & Li, J. (2019). Bio-based films with improved water resistance derived from soy protein isolate and stearic acid via bioconjugation. Journal of Cleaner Production, 214, 125–131. https://doi.org/10.1016/j.jclepro.2018.12.277

    Article  CAS  Google Scholar 

  • Yu, Z., Sun, L., Wang, W., Zeng, W., Mustapha, A., & Lin, M. (2018). Soy protein-based films incorporated with cellulose nanocrystals and pine needle extract for active packaging. Industrial Crops and Products, 112, 412–419. https://doi.org/10.1016/j.indcrop.2017.12.031

    Article  CAS  Google Scholar 

  • Zhang, H., Wang, L., Li, H., Chi, Y., Zhang, H., Xia, N., et al. (2021). Changes in properties of soy protein isolate edible films stored at different temperatures: Studies on water and glycerol migration. Foods, 10(8), 1797. https://doi.org/10.3390/foods10081797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, H.-S., Ma, Z., & Jing, P. (2020). Interaction of soy protein isolate fibrils with betalain from red beetroots: Morphology, spectroscopic characteristics and thermal stability. Food Research International, 135, 109289. https://doi.org/10.1016/j.foodres.2020.109289

Download references

Funding

This work was funded by “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” with the Master and PhD assistantships (Caroline Furtado Prestes #131515/2020–9, Fernanda Ramalho Procopio #141111/2018–6, Call CNPq/MCTI/FNDCT Nº 18/2021—Process #408117/2021–4) and the productivity grant (Miriam Dupas Hubinger #306461/2017–0). Partial financial support was received from FAPESP through the thematic project FAPESP 2019/27354–3. The work also received support from “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” for the project and PhD assistantships (CAPES-Brazil; Finance code 001, Lívia Alves Barroso #88887.479715/2020–00) and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (Process #21/2551–0000600-5) for funding this research project.

Author information

Authors and Affiliations

Authors

Contributions

Caroline Furtado Prestes: conceptualization; formal analysis; methodology; validation; visualization; writing, original draft; and writing, review and editing. Lívia Alves Barroso: formal analysis, validation, and writing, review and editing. Fernanda Ramalho Procópio: formal analysis, methodology, validation, and writing, review and editing. Mariano Michelon: supervision and writing, review and editing. Miriam Dupas Hubinger: supervision; writing, review and editing; project administration; and funding acquisition.

Corresponding author

Correspondence to Caroline Furtado Prestes.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prestes, C.F., Barroso, L.A., Procópio, F.R. et al. Influence of Paprika Oleoresin Addition on the Structural Properties of Soy Protein Isolate Films. Food Bioprocess Technol 16, 2971–2983 (2023). https://doi.org/10.1007/s11947-023-03094-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03094-1

Keywords

Navigation