Skip to main content
Log in

Effect of the Enzymatic Treatment of Phenolic-Rich Pigments from Purple Corn (Zea mays L.): Evaluation of Thermal Stability and Alpha-Glucosidase Inhibition

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The impact of enzymatic treatment of Candida antarctica lipase B on a phenolics-rich extract from purple corn (Zea mays L.) (PCE) was evaluated. PCE was obtained by solid–liquid extraction with 80% ethanol. PCE was treated with lipase B in acetonitrile using octanoic acid as acyl donor for 72 h. Acylated and non-acylated PCE were tested for thermal stability at 80 °C, ɑ-glucosidase inhibitory activity, and molecular docking. The enzymatic treatment promoted the generation of a reaction product identified by HPLC along with a bathochromic shift (530 to 570 nm) in the extract. Enzymatic treatment increased (p < 0.05) the half-life of total anthocyanins in solution at 80 °C from 6.05 to 10.05 h. Additionally, enhanced (p < 0.05) the ɑ-glucosidase inhibitory activity at a concentration of 0.5 mg eq. C3G/mL (11.7% non-acylated and 33.2% acylated). Molecular docking using predicted acylated structures of major anthocyanins in PCE was correlated with biochemical evaluation on ɑ-glucosidase; for instance, cyanidin-3-(6″-n-octanoyl)-glucoside (−9.4 kcal/mol) had a more favorable binding energy than non-acylated cyanidin-3-O-glucoside (−8.4 kcal/mol) with the catalytic site of ɑ-glucosidase. A ligand–protein interaction analysis showed that the acyl group plays an important role in stabilizing anthocyanins in the catalytic cavity of ɑ-glucosidase. Our results suggest that treatment with lipase B is a promising strategy to improve technological and biological potential of pigments from purple corn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Ahamad, J., Naquvi, K. J., Mir, S. R., Ali, M., & Shuaib, M. (2011). Review on role of natural αlpha-glucosidase inhibitors for management of diabetes mellitus. International Journal of Biomedical Research, 2(1), 374–380.

    CAS  Google Scholar 

  • Aoki, H., Kuze, N., Kato, Y., & Gen, S. E. (2002). Anthocyanins isolated from purple corn (Zea mays L.). Foods and Food Ingredients Journal of Japan, 41–45.

  • Bąkowska-Barczak, A. (2005). Acylated anthocyanins as stable, natural food colorants. Polish Journal of Food and Nutrition Sciences, 55(2), 107–116.

    Google Scholar 

  • Cai, D., Li, X., Chen, J., Jiang, X., Ma, X., Sun, J., Tian, L., Vidyarthi, S. K., Xu, J., Pan, Z., & Bai, W. (2022). A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chemistry, 366, 130611. https://doi.org/10.1016/j.foodchem.2021.130611

  • Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859–871. https://doi.org/10.1016/j.foodchem.2008.09.001

    Article  CAS  Google Scholar 

  • Celli, G. B., Selig, M. J., Tan, C., & Abbaspourrad, A. (2018). Synergistic bathochromic and hyperchromic shifts of anthocyanin spectra observed following complexation with iron salts and chondroitin sulfate. Food and Bioprocess Technology, 11(5), 991–1001. https://doi.org/10.1007/s11947-018-2055-z

    Article  CAS  Google Scholar 

  • Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2004). Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chemistry, 86(1), 69–77. https://doi.org/10.1016/j.foodchem.2003.08.011

    Article  CAS  Google Scholar 

  • Chatham, L. A., Howard, J. E., & Juvik, J. A. (2020). A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life. Food chemistry, 310, 125734. https://doi.org/10.1016/j.foodchem.2019.125734

  • Cortez, R., Luna-Vital, D. A., Margulis, D., & Gonzalez de Mejia, E. (2017). Natural pigments: Stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety, 16(1), 180–198. https://doi.org/10.1111/1541-4337.12244

    Article  CAS  PubMed  Google Scholar 

  • Cruz, L., Guimarães, M., Araujo, P., Evora, A., de Freitas, V., & Mateus, N. (2017). Malvidin 3-glucoside–fatty acid conjugates: From hydrophilic toward novel lipophilic derivatives. Journal of Agricultural and Food Chemistry, 65(31), 6513–6518. https://doi.org/10.1021/acs.jafc.6b05461

    Article  CAS  PubMed  Google Scholar 

  • Cruz, L., Benohoud, M., Rayner, C. M., Mateus, N., de Freitas, V., & Blackburn, R. S. (2018). Selective enzymatic lipophilization of anthocyanin glucosides from blackcurrant (Ribes nigrum L.) skin extract and characterization of esterified anthocyanins. Food Chemistry, 266, 415–419. https://doi.org/10.1016/j.foodchem.2018.06.024

    Article  CAS  PubMed  Google Scholar 

  • de Moura, S. C., Schettini, G. N., Garcia, A. O., Gallina, D. A., Alvim, I. D., & Hubinger, M. D. (2019). Stability of hibiscus extract encapsulated by ionic gelation incorporated in yogurt. Food and Bioprocess Technology, 12(9), 1500–1515. https://doi.org/10.1007/s11947-019-02308-9

    Article  CAS  Google Scholar 

  • de Pascual-Teresa, S., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (2002). LC–MS analysis of anthocyanins from purple corn cob. Journal of the Science of Food and Agriculture, 82(9), 1003–1006. https://doi.org/10.1002/jsfa.1143

    Article  CAS  Google Scholar 

  • Eiro, M. J., & Heinonen, M. (2002). Anthocyanin color behavior and stability during storage: Effect of intermolecular copigmentation. Journal of Agricultural and Food Chemistry, 50(25), 7461–7466. https://doi.org/10.1021/jf0258306

    Article  CAS  PubMed  Google Scholar 

  • Escribano-Bailon, M. T., & Santos-Buelga, C. (2012). Anthocyanin copigmentation-evaluation, mechanisms and implications for the colour of red wines. Current Organic Chemistry, 16(6), 715–723. https://doi.org/10.2174/138527212799957977

    Article  CAS  Google Scholar 

  • Fei, P., Zeng, F., Zheng, S., Chen, Q., Hu, Y., & Cai, J. (2021). Acylation of blueberry anthocyanins with maleic acid: Improvement of the stability and its application potential in intelligent color indicator packing materials. Dyes and Pigments, 184, 108852. https://doi.org/10.1016/j.dyepig.2020.108852

  • Fernandez-Aulis, F., Torres, A., Sanchez-Mendoza, E., Cruz, L., & Navarro-Ocana, A. (2020). New acylated cyanidin glycosides extracted from underutilized potential sources: Enzymatic synthesis, antioxidant activity and thermostability. Food chemistry, 309, 125796. https://doi.org/10.1016/j.foodchem.2019.125796

  • Giusti, M. M., & Wrolstad, R. E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14(3), 217–225. https://doi.org/10.1016/S1369-703X(02)00221-8

    Article  CAS  Google Scholar 

  • González-Manzano, S., Santos-Buelga, C., Duenas, M., Rivas-Gonzalo, J. C., & Escribano-Bailon, M. T. (2008). Colour implications of self-association processes of wine anthocyanins. European Food Research and Technology, 226(3), 483–490. https://doi.org/10.1007/s00217-007-0560-9

    Article  CAS  Google Scholar 

  • Goto, T. (1987). Structure, stability and color variation of natural anthocyanins. In Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products (pp. 113–158). Springer, Vienna. https://doi.org/10.1007/978-3-7091-8906-1_3

  • Grajeda-Iglesias, C., Salas, E., Barouh, N., Baréa, B., & Figueroa-Espinoza, M. C. (2017). Lipophilization and MS characterization of the main anthocyanins purified from hibiscus flowers. Food Chemistry, 230, 189–194. https://doi.org/10.1016/j.foodchem.2017.02.140

    Article  CAS  PubMed  Google Scholar 

  • Guimarães, M., Pérez-Gregorio, M., Mateus, N., de Freitas, V., Galinha, C. F., Crespo, J. G., Portugal, C. A., & Cruz, L. (2019). An efficient method for anthocyanins lipophilization based on enzyme retention in membrane systems. Food chemistry, 300, 125167. https://doi.org/10.1016/j.foodchem.2019.125167

  • Guimarães, M., Mateus, N., de Freitas, V., Branco, L. C., & Cruz, L. (2020). Microwave-assisted synthesis and ionic liquids: Green and sustainable alternatives toward enzymatic lipophilization of anthocyanin monoglucosides. Journal of Agricultural and Food Chemistry, 68(28), 7387–7392. https://doi.org/10.1021/acs.jafc.0c02599

    Article  CAS  PubMed  Google Scholar 

  • Houghton, A., Appelhagen, I., & Martin, C. (2021). Natural blues: Structure meets function in anthocyanins. Plants, 10(4), 726. https://doi.org/10.3390/plants10040726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indrianingsih, A. W., Tachibana, S., & Itoh, K. (2015). In vitro evaluation of antioxidant and α-glucosidase inhibitory assay of several tropical and subtropical plants. Procedia Environmental Sciences, 28, 639–648. https://doi.org/10.1016/j.proenv.2015.07.075

    Article  CAS  Google Scholar 

  • Ji, Y., Liu, D., Zhao, J., Zhao, J., Li, H., Li, L., Zhang, H., & Wang, H. (2021). In vitro and in vivo inhibitory effect of anthocyanin-rich bilberry extract on α-glucosidase and α-amylase. LWT, 145, 111484. https://doi.org/10.1016/j.lwt.2021.111484

  • Jokioja, J., Yang, B., & Linderborg, K. M. (2021). Acylated anthocyanins: A review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation. Comprehensive Reviews in Food Science and Food Safety, 20(6), 5570–5615. https://doi.org/10.1111/1541-4337.12836

    Article  CAS  PubMed  Google Scholar 

  • Juarez-Trujillo, N., Monribot-Villanueva, J. L., Jiménez-Fernández, V. M., Suárez-Montaño, R., Aguilar-Colorado, Á. S., Guerrero-Analco, J. A., & Jiménez, M. (2018). Phytochemical characterization of Izote (Yucca elephantipes) flowers. Journal of Applied Botany and Food Quality, 91, 202–210.

  • Kammerer, D. R. (2016). Anthocyanins. In Handbook on natural pigments in food and beverages (pp. 61–80). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100371-8.00003-8

  • Kochadai, N., Khasherao, B. Y., & Sinija, V. R. N. (2022). Effect of radiofrequency pre-treatment on the extraction of bioactives from Clitoria ternatea and Hibiscus rosa sinensis and insights to enzyme inhibitory activities. Food and Bioprocess Technology, 15(3), 571–589. https://doi.org/10.1007/s11947-022-02770-y

    Article  CAS  Google Scholar 

  • Lao, F., Sigurdson, G. T., & Giusti, M. M. (2017). Health benefits of purple corn (Zea mays L.) phenolic compounds. Comprehensive Reviews in Food Science and Food Safety, 16(2), 234–246. https://doi.org/10.1111/1541-4337.12249

  • Leonarski, E., Cesca, K., de Oliveira, D., & Zielinski, A. A. (2022). A review on enzymatic acylation as a promising opportunity to stabilizing anthocyanins. Critical Reviews in Food Science and Nutrition, 1–20. https://doi.org/10.1080/10408398.2022.2041541

  • Liu, J., Zhuang, Y., Hu, Y., Xue, S., Li, H., Chen, L., & Fei, P. (2020). Improving the color stability and antioxidation activity of blueberry anthocyanins by enzymatic acylation with p-coumaric acid and caffeic acid. Lwt, 130, 109673. https://doi.org/10.1016/j.lwt.2020.109673

  • Luna-Vital, D., Cortez, R., Ongkowijoyo, P., & de Mejia, E. G. (2018). Protection of color and chemical degradation of anthocyanin from purple corn (Zea mays L.) by zinc ions and alginate through chemical interaction in a beverage model. Food Research International, 105, 169–177. https://doi.org/10.1016/j.foodres.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  • Luo, X. E., Wang, R., Wang, J., Li, Y., Luo, H., Chen, S., Zeng, X., & Han, Z. (2022). Acylation of anthocyanins and their applications in the food industry: Mechanisms and recent research advances. Foods, 11(14), 2166. https://doi.org/10.3390/foods11142166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquez-Rodriguez, A. S., Guimarães, M., Mateus, N., de Freitas, V., Ballinas-Casarrubias, M. L., Fuentes-Montero, M. E., Salas, E., & Cruz, L. (2021). Disaccharide anthocyanin delphinidin 3-O-sambubioside from Hibiscus sabdariffa L.: Candida antarctica lipase B-catalyzed fatty acid acylation and study of its color properties. Food Chemistry, 344, 128603. https://doi.org/10.1016/j.foodchem.2020.128603

  • Matsufuji, H., Kido, H., Misawa, H., Yaguchi, J., Otsuki, T., Chino, M., Takeda, M., & Yamagata, K. (2007). Stability to light, heat, and hydrogen peroxide at different pH values and DPPH radical scavenging activity of acylated anthocyanins from red radish extract. Journal of Agricultural and Food Chemistry, 55(9), 3692–3701. https://doi.org/10.1021/jf063598o

    Article  CAS  PubMed  Google Scholar 

  • Monribot-Villanueva, J. L., Elizalde-Contreras, J. M., Aluja, M., Segura-Cabrera, A., Birke, A., Guerrero-Analco, J. A., & Ruiz-May, E. (2019). Endorsing and extending the repertory of nutraceutical and antioxidant sources in mangoes during postharvest shelf life. Food Chemistry, 285, 119–129.

  • Morais, F. S., Canuto, K. M., Ribeiro, P. R., Silva, A. B., Pessoa, O. D., Freitas, C. D., Alencar, N. M., Oliveira, A., & Ramos, M. V. (2020). Chemical profiling of secondary metabolites from Himatanthus drasticus (Mart.) Plumel latex with inhibitory action against the enzymes α-amylase and α-glucosidase: In vitro and in silico assays. Journal of ethnopharmacology, 253, 112644. https://doi.org/10.1016/j.jep.2020.112644

  • Mu, T., Sun, H., Zhang, M., & Wang, C. (2017). Sweet potato processing technology. Academic Press.

  • Neuenfeldt, N. H., de Moraes, D. P., de Deus, C., Barcia, M. T., & de Menezes, C. R. (2022). Blueberry phenolic composition and improved stability by microencapsulation. Food and Bioprocess Technology, 1–18. https://doi.org/10.1007/s11947-021-02749-1

  • Oancea, S. (2021). A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants, 10(9), 1337. https://doi.org/10.3390/antiox10091337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega, G. M., & Guerra, M. (2006). Separación, caracterización estructural y cuantificación de antocianinas mediante métodos químico-físicos. Parte II. ICIDCA. Sobre los Derivados de la Caña de Azúcar, 40(3), 3–11.

  • Otera, J., & Nishikido, J. (2009). Esterification: Methods, reactions, and applications. John Wiley & Sons. https://doi.org/10.1021/ja104341h

    Article  Google Scholar 

  • Patras, A., Brunton, N. P., O’Donnell, C., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; Mechanisms and kinetics of degradation. Trends in Food Science & Technology, 21(1), 3–11. https://doi.org/10.1016/j.tifs.2009.07.004

    Article  CAS  Google Scholar 

  • Patras, A., Brunton, N. P., Tiwari, B. K., & Butler, F. (2011). Stability and degradation kinetics of bioactive compounds and colour in strawberry jam during storage. Food and Bioprocess Technology, 4(7), 1245–1252. https://doi.org/10.1007/s11947-009-0226-7

    Article  CAS  Google Scholar 

  • Sadilova, E., Stintzing, F. C., & Carle, R. (2006). Thermal degradation of acylated and nonacylated anthocyanins. Journal of Food Science, 71(8), C504–C512. https://doi.org/10.1111/j.1750-3841.2006.00148.x

    Article  CAS  Google Scholar 

  • Salgado-Escobar, I., Hernández-Rodríguez, G., Suárez-López, Y. D. C., Mancera-Ugarte, M. J., & Guerra-Ramírez, D. (2020). Efficacy of disinfection methods and effects on nutraceutical properties in coriander and strawberry. Revista mexicana de ciencias agrícolas, 11(2), 327–337. https://doi.org/10.29312/remexca.v11i2.1892

  • Salinas Moreno, Y., Cruz Chávez, F. J., Diaz Ortiz, S. A., & Castillo González, F. (2012). Pigmented maize grains from Chiapas, physical characteristics, anthocyanin content and nutraceutical value. Revista Fitotecnia Mexicana, 35(1), 33–41.

    Article  Google Scholar 

  • Sanner, M. F. (1999). Python: A programming language for software integration and development. Journal of Molecular Graphics and Modelling, 17(2), 57–61.

    CAS  PubMed  Google Scholar 

  • Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Bekas, C., & Lee, A. A. (2019). Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS Central Science, 5(9), 1572–1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng, H., Mi, Y., Cao, H., & Chen, L. (2022). Enzymatic acylation of raspberry anthocyanin: Evaluations on its stability and oxidative stress prevention. Food Chemistry, 372, 130766. https://doi.org/10.1016/j.foodchem.2021.130766

  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31, 455–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda, T., Horio, F., Uchida, K., Aoki, H., & Osawa, T. (2003). Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. The Journal of Nutrition, 133(7), 2125–2130. https://doi.org/10.1093/jn/133.7.2125

    Article  CAS  PubMed  Google Scholar 

  • Vidana Gamage, G. C., Lim, Y. Y., & Choo, W. S. (2021). Sources and relative stabilities of acylated and nonacylated anthocyanins in beverage systems. Journal of Food Science and Technology, 1–15. https://doi.org/10.1007/s13197-021-05054-z

  • Xu, Q., Zhou, Y., Luo, L., Huang, Z., Nie, F., & Gao, G. (2017). Acylation of blueberry anthocyanins with aliphatic carbonyl acids and their stability analysis. In 2017 6th International Conference on Energy and Environmental Protection (ICEEP 2017) (pp. 904–907). Atlantis Press. https://doi.org/10.2991/iceep-17.2017.156

  • Xu, H., Liu, M., Liu, H., Zhao, B., Zheng, M., & Liu, J. (2021). Anthocyanins from purple corn ameliorated obesity in high fat diet-induced obese mice through activating hepatic AMPK. Journal of Functional Foods, 84, 104582. https://doi.org/10.1016/j.jff.2021.104582

  • Yang, W., Kortesniemi, M., Ma, X., Zheng, J., & Yang, B. (2019). Enzymatic acylation of blackcurrant (Ribes nigrum) anthocyanins and evaluation of lipophilic properties and antioxidant capacity of derivatives. Food Chemistry, 281, 189–196. https://doi.org/10.1016/j.foodchem.2018.12.111

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., Sun, H., Tu, L., Jin, Y., Zhang, Z., Wang, M., Liu, S., Wang, Y., & He, S. (2020). Kinetics of enzymatic synthesis of cyanidin-3-glucoside lauryl ester and its physicochemical property and proliferative effect on intestinal probiotics. Biology, 9(8), 205. https://doi.org/10.3390/biology9080205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Zhang, J. L., Shen, L. H., Feng, L. J., & Zhou, Q. (2021). Inhibition mechanism of diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) against α-amylase and α-glucosidase. Food chemistry, 359, 129934. https://doi.org/10.1016/j.foodchem.2021.129934

  • Zhang, Q., de Mejia, E. G., Luna-Vital, D., Tao, T., Chandrasekaran, S., Chatham, L., Juvik, J., Singh, V., & Kumar, D. (2019). Relationship of phenolic composition of selected purple maize (Zea mays L.) genotypes with their anti-inflammatory, anti-adipogenic and anti-diabetic potential. Food Chemistry, 289, 739–750. https://doi.org/10.1016/j.foodchem.2019.03.116

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., Liu, S., Zhao, Z., You, L., Harrison, M. D., & Zhang, Z. (2021). Enzymatic acylation of cyanidin-3-glucoside with fatty acid methyl esters improves stability and antioxidant activity. Food Chemistry, 343, 128482. https://doi.org/10.1016/j.foodchem.2020.128482

  • Zhao, C. L., Yu, Y. Q., Chen, Z. J., Wen, G. S., Wei, F. G., Zheng, Q., Wang, C. D., & Xiao, X. L. (2017). Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry, 214, 119–128. https://doi.org/10.1016/j.foodchem.2016.07.073

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y., Tian, J., Yang, W., Chen, S., Liu, D., Fang, H., Zhang, H., & Ye, X. (2020). Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chemistry, 317, 126346. https://doi.org/10.1016/j.foodchem.2020.126346

  • Zisis, T., Freddolino, P. L., Turunen, P., van Teeseling, M. C., Rowan, A. E., & Blank, K. G. (2015). Interfacial activation of Candida antarctica lipase B: Combined evidence from experiment and simulation. Biochemistry, 54(38), 5969–5979. https://doi.org/10.1021/acs.biochem.5b00586

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M.T. Celestino Aparicio Martínez, purple corn producer, for kindly providing the samples for this study.

Funding

Jimena Yañez Apam was supported by a CONACyT scholarship number 1078514. This project was financially supported by the Young Investigator Award on Food Science and Technology 2021 from the Mexican Academy of Sciences, received by Diego Luna-Vital, and a seed funding provided by the Institute for Obesity Research—Tecnologico de Monterrey, Mexico.

Author information

Authors and Affiliations

Authors

Contributions

Jimena Yañez Apam performed the experiments, analyzed the data, and wrote the manuscript text. Azucena Herrera-González, Astrid Domínguez-Uscanga, Jose Antonio Guerrero Analco, Juan Luis Monribot-Villanueva, and Jorge Alberto Fragoso Medina provided guidance, specialized equipment, and data curation. Diego Armando Luna-Vital conceived the project, provided guidance and funding, and contributed to writing the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Diego A. Luna-Vital.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yañez Apam, J., Herrera-González, A., Domínguez Uscanga, A. et al. Effect of the Enzymatic Treatment of Phenolic-Rich Pigments from Purple Corn (Zea mays L.): Evaluation of Thermal Stability and Alpha-Glucosidase Inhibition. Food Bioprocess Technol 16, 2055–2069 (2023). https://doi.org/10.1007/s11947-023-03021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03021-4

Keywords

Navigation