Skip to main content
Log in

Active Biodegradable Packaging for Foods Containing Baccharis dracunculifolia Leaf as Natural Antioxidant

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Baccharis dracunculifolia DC (Asteraceae) is a Brazilian native plant that has excellent antioxidant properties. This work aimed to develop an active biodegradable packaging for food using B. dracunculifolia leaf powder as a natural antioxidant. Biodegradable films were produced by blown extrusion with cassava starch, poly (butylene adipate-co-terephthalate), glycerol, and leaf powder of B. dracunculifolia (1.25, 2.5, and 5.0 wt.%), and the films were tested as active packaging for different food simulants. The B. dracunculifolia improved the tensile strength and elongation of the films. The films’ antioxidant activities were proportional to the B. dracunculifolia content with the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), and TPC (Total Phenolic Compounds), reaching 3.95 μmol of Trolox g film−1, 10.60 μmol of TEAC g film−1, and 0.97 mg GAE g film−1, respectively. B. dracunculifolia is an excellent font of natural antioxidants, and it can be used in active biodegradable packaging for food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Adilah, A. N., Jamilah, B., Noranizan, M. A., & Hanani, Z. A. N. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1–7. https://doi.org/10.1016/j.fpsl.2018.01.00.

    Article  Google Scholar 

  • Aparicio-Fernández, X., Vega-Ahuatzin, A., Ochoa-Velasco, C. E., Cid-Pérez, S., Hernández-Carranza, P., & Ávila-Sosa, R. (2018). Physical and antioxidant characterization of edible films added with red prickly pear (Opuntia ficus-indica L.) cv. San Martín peel and/or its aqueous extracts, Food and Bioprocess Technology. https://doi.org/10.1007/s11947-017-2017-x.

  • Araújo, G. K. P., Souza, S. J., Silva, M. V., Yamashita, F., Gonçalves, O. H., Leimann, F. V., & Shirai, M. A. (2015). Physical, antimicrobial and antioxidant properties of starch-based film containing ethanolic propolis extract. International Journal of Food Science & Technology, 50(9), 2080–2087. https://doi.org/10.1111/ijfs.12869.

    Article  CAS  Google Scholar 

  • Athar, N., Hardacre, A., Taylor, G., Clark, S., Harding, R., & McLaughlin, J. (2006). Vitamin retention in extruded food products. Journal of Food Composition and Analysis, 19(4), 379–383. https://doi.org/10.1016/j.jfca.2005.03.004.

    Article  CAS  Google Scholar 

  • Aziz, S. G.G., and Almasi, H. (2018) Physical characteristics, release properties, and antioxidant and antimicrobial activities of whey protein isolate films incorporated with thyme (Thymus vulgaris L.) extract-loaded nanoliposomes, Food and Bioprocess Technology, https://doi.org/10.1007/s11947-018-2121-6

  • Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43(5), 772–777. https://doi.org/10.1366/0003702894202201.

    Article  CAS  Google Scholar 

  • Basiak, E., Debeaufort, F., & Lenart, A. (2016). Effect of oil lamination between plasticized starch layers on film properties. Food Chemistry, 195, 56–63. https://doi.org/10.1016/j.foodchem.2015.04.098.

    Article  CAS  PubMed  Google Scholar 

  • Bof, M. J., Jiménez, A., Locaso, D. E., García, M. A., & Chiralt, A. (2016). Grapefruit seed extract and lemon essential oil as active agents in corn starch–chitosan blend films. Food and Bioprocess Technology, 9(12), 2033–2045. https://doi.org/10.1007/s11947-016-1789-8.

    Article  CAS  Google Scholar 

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.

    Article  CAS  Google Scholar 

  • Cabanillas, A., Nuñez, J., Cruz-Tirado, J., Vejarano, R., Tapia-Blácido, D. R., Arteaga, H., & Siche, R. (2019). Pineapple shell fiber as reinforcement in cassava starch foam trays. Polymers and Polymer Composites, 27(8), 496–506. https://doi.org/10.1177/0967391119848187.

    Article  CAS  Google Scholar 

  • Caetano, K. C., Lopes, N. A., Costa, T. M. H., Brandelli, A., Rodrigues, E., Flôres, S. H., & Cladera-Olivera, F. (2018). Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packaging and Shelf Life, 16, 138–147. https://doi.org/10.1016/j.fpsl.2018.03.006.

    Article  Google Scholar 

  • Cai, Y., Lv, J., & Feng, J. (2013). Spectral characterization of four kinds of biodegradable plastics: Poly (lactic acid), poly (butylenes adipate-co-terephthalate), poly (hydroxybutyrate-co-hydroxyvalerate) and poly (butylenes succinate) with FTIR and Raman spectroscopy. Journal of Polymers and the Environment, 21(1), 108–114. https://doi.org/10.1007/s10924-012-0534-2.

    Article  CAS  Google Scholar 

  • Campos, S. S., Oliveira, A., Moreira, T. F. M., Silva, T. B. V., Silva, M. V., Pinto, J. A., Bilck, A. P., Gonçalves, O. H., Fernandes, I. P., Barreiro, M. F., Yamashita, F., Valderrama, P., Shirai, M. A., & Leimann, F. V. (2019). TPCS/PBAT blown extruded films added with curcumin as a technological approach for active packaging materials. Food Packaging and Shelf Life, 22, 100424. https://doi.org/10.1016/j.fpsl.2019.100424.

    Article  Google Scholar 

  • Cardoso, M. A. P., Carvalho, G. M., Yamashita, F., Mali, S., Eiras, D., Demiate, I. M., & Grossmann, M. V. E. (2018). Oat hull fibers bleached by reactive extrusion with alkaline hydrogen peroxide in thermoplastic starch/poly (butylene adipate-co-terephthalate) composites. Polymer Composites, 39(6), 1950–1958. https://doi.org/10.1002/pc.24151.

    Article  CAS  Google Scholar 

  • Casagrande, M., Zanela, J., Wagner Júnior, A., Busso, C., Wouk, J., Iurckevicz, G., Montanher, P. F., Yamashita, F., & Malfatti, C. R. M. (2018). Influence of time, temperature and solvent on the extraction of bioactive compounds of Baccharis dracunculifolia: In vitro antioxidant activity, antimicrobial potential, and phenolic compound quantification. Industrial Crops and Products, 125, 207–219. https://doi.org/10.1016/j.indcrop.2018.08.088.

    Article  CAS  Google Scholar 

  • Crizel, T. M., Costa, T. M. H., Rios, A. O., & Flôres, S. H. (2016). Valorization of food-grade industrial waste in the obtaining active biodegradable films for packaging. Industrial Crops and Products, 87, 218–228. https://doi.org/10.1016/j.indcrop.2016.04.039.

    Article  CAS  Google Scholar 

  • Dammak, M., Fourati, Y., Tarrés, Q., Delgado-Aguilar, M., Mutjé, P., & Boufi, S. (2020). Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Industrial Crops and Products, 144, 112061. https://doi.org/10.1016/j.indcrop.2019.112061.

    Article  CAS  Google Scholar 

  • Fahrngruber, B., Eichelter, J., Erhäusl, S., Seidl, B., Wimmer, R., & Mundigler, N. (2019). Potato-fiber modified thermoplastic starch: Effects of fiber content on material properties and compound characteristics. European Polymer Journal, 111, 170–177. https://doi.org/10.1016/j.eurpolymj.2018.10.050.

    Article  CAS  Google Scholar 

  • Figueiredo-Rinhel, A. S. G., Kabeya, L. M., Bueno, P. C. P., Jorge-Tiossi, R. F., Azzolini, A. E. C. S., Bastos, J. K., & Lucisano-Valim, Y. M. (2013). Inhibition of the human neutrophil oxidative metabolism by Baccharis dracunculifolia DC (Asteraceae) is influenced by seasonality and the ratio of caffeic acid to other phenolic compounds. Journal of Ethnopharmacology, 150(2), 655–664. https://doi.org/10.1016/j.jep.2013.09.019.

    Article  CAS  PubMed  Google Scholar 

  • Gaikwad, K. K., Lee, J. Y., & Lee, Y. S. (2016). Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application. Journal of Food Science and Technology, 53(3), 1608–1619. https://doi.org/10.1007/s13197-015-2104-9.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, P. S., Baron, A. M., Yamashita, F., Mali, S., Eiras, D., & Grossmann, M. V. E. (2018). Compatibilization of starch/poly (butylene adipate -co- terephthalate) blown films using itaconic acid and sodium hypophosphite. Journal of Applied Polymer Science, 135(33). https://doi.org/10.1002/app.46629.

  • González Seligra, P., Eloy Moura, L., Famá, L., Druzian, J. I., & Goyanes, S. (2016). Influence of incorporation of starch nanoparticles in PBAT/TPS composite films. Polymer International, 65(8), 938–945. https://doi.org/10.1002/pi.5127.

    Article  CAS  Google Scholar 

  • Guimarães, N. S. S., Mello, J. C., Paiva, J. S., Bueno, P. C. P., Berretta, A. A., Torquato, R. J., Nantes, I. L., & Rodrigues, T. (2012). Baccharis dracunculifolia, the main source of green propolis, exhibits potent antioxidant activity and prevents oxidative mitochondrial damage. Food and Chemical Toxicology, 50(3-4), 1091–1097. https://doi.org/10.1016/j.fct.2011.11.014.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Kang, J. H., & Song, K. B. (2020). Development of a sword bean (Canavalia gladiata) starch film containing goji berry extract. Food and Bioprocess Technology, 13(5), 911–921. https://doi.org/10.1007/s11947-020-02447-4.

    Article  CAS  Google Scholar 

  • Lee, S. Y., Lee, S. J., Choi, D. S., & Hur, S. J. (2015). Current topics in active and intelligent food packaging for preservation of fresh foods. Journal of the Science of Food and Agriculture, 95(14), 2799–2810. https://doi.org/10.1002/jsfa.7218.

    Article  CAS  PubMed  Google Scholar 

  • Lekube, B. M., Fahrngruber, B., Kozich, M., Wastyn, M., & Burgstaller, C. (2019). Influence of processing on the mechanical properties and morphology of starch-based blends for film applications. Journal of Applied Polymer Science, 136(39), 47990. https://doi.org/10.1002/app.47990.

    Article  CAS  Google Scholar 

  • Luzi, F., Pannucci, E., Santi, L., Kenny, J. M., Torre, L., Bernini, R., & Puglia, D. (2019). Gallic acid and quercetin as intelligent and active ingredients in poly (vinyl alcohol) films for food packaging. Polymers, 11(12). https://doi.org/10.3390/polym11121999.

  • Maria, T. M. C., Carvalho, R. A., Sobral, P. J. A., Habitante, A. M. B. Q., & Solorza-Feria, J. (2008). The effect of the degree of hydrolysis of the PVA and the plasticizer concentration on the color, opacity, and thermal and mechanical properties of films based on PVA and gelatin blends. Journal of Food Engineering, 87(2), 191–199. https://doi.org/10.1016/j.jfoodeng.2007.11.026.

    Article  CAS  Google Scholar 

  • Martinez-Correa, H. A., Cabral, F. A., Magalhães, P. M., Queiroga, C. L., Godoy, A. T., Sánchez-Camargo, A. P., & Paviani, L. C. (2012). Extracts from the leaves of Baccharis dracunculifolia obtained by a combination of extraction processes with supercritical CO2, ethanol and water. The Journal of Supercritical Fluids, 63, 31–39. https://doi.org/10.1016/j.supflu.2011.12.016.

    Article  CAS  Google Scholar 

  • Mauriello, G., De Luca, E., La Storia, A., Villani, F., & Ercolini, D. (2005). Antimicrobial activity of a nisin-activated plastic film for food packaging. Letters in Applied Microbiology, 41(6), 464–469. https://doi.org/10.1111/j.1472-765X.2005.01796.x.

    Article  CAS  PubMed  Google Scholar 

  • Merci, A., Marim, R. G., Urbano, A., & Mali, S. (2019). Films based on cassava starch reinforced with soybean hulls or microcrystalline cellulose from soybean hulls. Food Packaging and Shelf Life, 20, 100321. https://doi.org/10.1016/j.fpsl.2019.100321.

    Article  Google Scholar 

  • Olivato, J. B., Grossmann, M. V. E., Bilck, A. P., & Yamashita, F. (2012a). Effect of organic acids as additives on the performance of thermoplastic starch/polyester blown films. Carbohydrate Polymers, 90(1), 159–164. https://doi.org/10.1016/j.carbpol.2012.05.009.

    Article  CAS  PubMed  Google Scholar 

  • Olivato, J. B., Grossmann, M. V. E., Yamashita, F., Eiras, D., & Pessan, L. A. (2012b). Citric acid and maleic anhydride as compatibilizers in starch/poly (butylene adipate-co-terephthalate) blends by one-step reactive extrusion. Carbohydrate Polymers, 87(4), 2614–2618. https://doi.org/10.1016/j.carbpol.2011.11.035.

    Article  CAS  Google Scholar 

  • Olivato, J. B., Müller, C. M. O., Carvalho, G. M., Yamashita, F., & Grossmann, M. V. E. (2014). Physical and structural characterisation of starch/polyester blends with tartaric acid. Materials Science and Engineering: C, 39, 35–39. https://doi.org/10.1016/j.msec.2014.02.020.

    Article  CAS  Google Scholar 

  • Olivato, J. B., Marini, J., Pollet, E., Yamashita, F., Grossmann, M. V. E., & Avérous, L. (2015). Elaboration, morphology and properties of starch/polyester nano-biocomposites based on sepiolite clay. Carbohydrate Polymers, 118, 250–256. https://doi.org/10.1016/j.carbpol.2014.11.014.

    Article  CAS  PubMed  Google Scholar 

  • Ornelas-Paz, J. J., Cira-Chávez, L. A., Gardea-Béjar, A. A., Guevara-Arauza, J. C., Sepúlveda, D. R., Reyes-Hernández, J., & Ruiz-Cruz, S. (2013). Effect of heat treatment on the content of some bioactive compounds and free radical-scavenging activity in pungent and non-pungent peppers. Food Research International, 50(2), 519–525. https://doi.org/10.1016/j.foodres.2011.01.006.

    Article  CAS  Google Scholar 

  • Pelissari, F. M., Yamashita, F., Garcia, M. A., Martino, M. N., Zaritzky, N. E., & Grossmann, M. V. E. (2012). Constrained mixture design applied to the development of cassava starch–chitosan blown films. Journal of Food Engineering, 108(2), 262–267. https://doi.org/10.1016/j.jfoodeng.2011.09.004.

    Article  CAS  Google Scholar 

  • Pereira, C. A., Costa, A. C. B. P., Liporoni, P. C. S., Rego, M. A., & Jorge, A. O. C. (2016). Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans. Journal of Infection and Public Health, 9(3), 324–330. https://doi.org/10.1016/j.jiph.2015.10.012.

    Article  PubMed  Google Scholar 

  • Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., & Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488–495. https://doi.org/10.1016/j.foodhyd.2016.09.034.

    Article  CAS  Google Scholar 

  • Priya, B., Gupta, V. K., Pathania, D., & Singha, A. S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate Polymers, 109, 171–179. https://doi.org/10.1016/j.carbpol.2014.03.044.

    Article  CAS  PubMed  Google Scholar 

  • Ramírez Tapias, Y. A., Peltzer, M. A., Delgado, J. F., & Salvay, A. G. (2020). Kombucha tea by-product as source of novel materials: Formulation and characterization of films. Food and Bioprocess Technology, 13(7), 1166–1180. https://doi.org/10.1007/s11947-020-02471-4.

    Article  CAS  Google Scholar 

  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3.

    Article  CAS  PubMed  Google Scholar 

  • Reis, M. O., Zanela, J., Olivato, J., Garcia, P. S., Yamashita, F., & Grossmann, M. V. E. (2014). Microcrystalline cellulose as reinforcement in thermoplastic starch/poly (butylene adipate-co-terephthalate) films. Journal of Polymers and the Environment, 22(4), 545–552. https://doi.org/10.1007/s10924-014-0674-7.

    Article  CAS  Google Scholar 

  • Ren, J., Fu, H., Ren, T., & Yuan, W. (2009). Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly (lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 77(3), 576–582. https://doi.org/10.1016/j.carbpol.2009.01.024.

    Article  CAS  Google Scholar 

  • Restrepo, A. E., Rojas, J. D., García, O. R., Sánchez, L. T., Pinzón, M. I., & Villa, C. C. (2018). Mechanical, barrier, and color properties of banana starch edible films incorporated with nanoemulsions of lemongrass (Cymbopogon citratus) and rosemary (Rosmarinus officinalis) essential oils. Food Science and Technology International, 24(8), 705–712. https://doi.org/10.1177/1082013218792133.

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2020). Edible films prepared with different biopolymers, containing polyphenols extracted from elderberry (Sambucus nigra L.), to protect food products and to improve food functionality. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-020-02516-8.

  • Rojas-Graü, M. A., Avena-Bustillos, R. J., Olsen, C., Friedman, M., Henika, P. R., Martín-Belloso, O., Pan, Z., & McHugh, T. H. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of Food Engineering, 81(3), 634–641. https://doi.org/10.1016/j.jfoodeng.2007.01.007.

    Article  CAS  Google Scholar 

  • Rufino, M. D. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. D. G., Pérez-jiménez, J., & Saura-Colixto, F. D. (2007). Metodologia científica : Determinação da atividade antioxidante total em frutas pela captura do radical livre. Comunicado Técnico on line, 128.

  • Silva, T. B. V., Moreira, T. F. M., Oliveira, A., Bilck, A. P., Gonçalves, O. H., Ferreira, I. C. F. R., Barros, L., Barreiro, M. F., Yamashita, F., Shirai, M. A., & Leimann, F. V. (2019). Araucaria angustifolia (Bertol.) Kuntze extract as a source of phenolic compounds in TPS/PBAT active films. Food & Function. https://doi.org/10.1039/C9FO01315F.

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1.

  • Slavutsky, A. M., & Bertuzzi, M. A. (2014). Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydrate Polymers, 110, 53–61. https://doi.org/10.1016/j.carbpol.2014.03.049.

    Article  CAS  PubMed  Google Scholar 

  • Souza, K. C., Correa, L. G., Silva, T. B. V., Moreira, T. F. M., Oliveira, A., Sakanaka, L. S., Dias, M. I., Barros, L., Ferreira, I. C. F. R., Valderrama, P., Leimann, F. V., & Shirai, M. A. (2020). Soy protein isolate films incorporated with Pinhão (Araucaria angustifolia (Bertol.) Kuntze) extract for potential use as edible oil active packaging. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-020-02454-5.

  • Spiridon, I., Anghel, N. C., Darie-Nita, R. N., Iwańczuk, A., Ursu, R. G., & Spiridon, I. A. (2020). New composites based on starch/Ecoflex®/biomass wastes: Mechanical, thermal, morphological and antimicrobial properties. International Journal of Biological Macromolecules, 156, 1435–1444. https://doi.org/10.1016/j.ijbiomac.2019.11.185.

    Article  CAS  PubMed  Google Scholar 

  • Suwanprateep, S., Kumsapaya, C., & Sayan, P. (2019). Structure and thermal properties of rice starch-based film blended with mesocarp cellulose fiber. Materials Today: Proceedings, 17, 2039–2047. https://doi.org/10.1016/j.matpr.2019.06.252.

    Article  CAS  Google Scholar 

  • Talón, E., Trifkovic, K. T., Vargas, M., Chiralt, A., & González-Martínez, C. (2017). Release of polyphenols from starch-chitosan based films containing thyme extract. Carbohydrate Polymers, 175, 122–130. https://doi.org/10.1016/j.carbpol.2017.07.067.

    Article  CAS  PubMed  Google Scholar 

  • Zanela, J., Bilck, A. P., Casagrande, M., Grossmann, M. V. E., & Yamashita, F. (2018). Oat fiber as reinforcement for starch/polyvinyl alcohol materials produced by injection molding. Starch - Stärke, 70(7-8). https://doi.org/10.1002/star.201700248.

Download references

Acknowledgements

Juliano Zanela was a fellow of the National Council for Scientific and Technological Development (CNPq) - Brazil (150102/2018-6).

The authors thank the multi-user Laboratories at Londrina State University (UEL) for the X-ray diffraction analysis (LARX), FT-IR (ESPEC), and scanning electron microscopy (LMEM). The authors also thank the Federal University of Technology - Parana (UTFPR).

Funding

Juliano Zanela was a fellow of National Council for Scientific and Technological Development (CNPq) - Brazil (150102/2018-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliano Zanela.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanela, J., Casagrande, M., Radaelli, J.C. et al. Active Biodegradable Packaging for Foods Containing Baccharis dracunculifolia Leaf as Natural Antioxidant. Food Bioprocess Technol 14, 1301–1310 (2021). https://doi.org/10.1007/s11947-021-02641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02641-y

Keywords

Navigation