Skip to main content
Log in

Assessing Changes in Enriched Maize Flour Formulations After Extrusion by Means of FTIR, XRD, and Chemometric Analysis

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Spectral analysis employing multivariate techniques was employed to differentiate plain maize flours from formulations containing maize with added milled chia or quinoa seeds for producing cereal breakfast extrudates. The physicochemical changes of the enriched formulations due to processing stages and formulation were evaluated by using FTIR and chemometric analysis, which allowed a rapid and non-destructive discrimination between sample processing and compositional aspects. Specific IR frequencies were selected which provided highest sample discrimination. Selected IR absorbance relationships at those specific wavenumbers were useful to track changes promoted by extrusion for carbohydrates, proteins, and lipids. The complexes between amylose and lipids, that takes place during extrusion, underwent distinctive changes as confirmed by XRD. The crystallinity loss, after extrusion (with an average value of 50%), shows evidence of amylose-lipid complexes formation of type Eh and Vh. Correlations between the textural behavior, composition, and selected FTIR indices were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez-Martinez, L., Kondury, K. P., & Harper, J. M. (1988). A general model for expansion of extruded products. Journal of Food Science, 53(2), 609–615.

    Article  Google Scholar 

  • Atwell, W. A., Patrick, B. M., Johnson, L. A., & Glass, R. W. (1982). Characterization of quinoa starch. Cereal Chemistry, 60(1), 9–11.

    Google Scholar 

  • Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta, 1767(9), 1073–1101.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar, S., & Hanna, M. A. (1997). Modification of microstructure of starch extruded with selected lipids. Starch, 49(1), 12–20.

    Article  CAS  Google Scholar 

  • Bisharat, G. I., Oikonomopoulou, V. P., Panagiotou, N. M., Krokida, M. K., & Maroulis, Z. B. (2013). Effect of extrusion conditions on the structural properties of corn extrudates enriched with dehydrated vegetables. Food Research International, 53(1), 1–14. https://doi.org/10.1016/j.foodres.2013.03.043.

    Article  CAS  Google Scholar 

  • Brennan, M. A., Derbyshire, E., Tiwari, B. K., & Brennan, C. S. (2013). Ready-to-eat snack products: the role of extrusion technology in developing consumer acceptable and nutritious snacks. International Journal of Food Science and Technology, 48(5), 893–902.

    Article  CAS  Google Scholar 

  • Cairns, P., Morris, V. J. S. N., & Smith, A. C. (1997). X-ray diffraction studies on extruded maize grits. Journal of Cereal Science, 26(2), 223–227.

    Article  CAS  Google Scholar 

  • Capron, I., Robert, P., Colonna, P., Brogly, M., & Planchot, V. (2007). Starch in rubbery and glassy states by FTIR spectroscopy. Carbohydrate Polymers, 68(2), 249–259.

    Article  CAS  Google Scholar 

  • Cheetham, N. W. H., & Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers, 36(4), 277–284.

    Article  CAS  Google Scholar 

  • Cremer, D. R., & Kaletunç, G. (2003). Fourier transform infrared microspectroscopic study of the chemical microstructure of corn and oat flour-based extrudates. Carbohydrate Polymers, 52(1), 53–65.

    Article  CAS  Google Scholar 

  • Cueto, M., Porras-Saavedra, J., Farroni, A., Alamilla-Beltrán, L., Schonenlechner, R., Schleining, G., & Buera, P. (2015). Physical and mechanical properties of maize extrudates as affected by the addition of chia and quinoa seeds and antioxidants. Journal of Food Engineering, 167, 139–146.

    Article  CAS  Google Scholar 

  • Desrumaux, A., Bouvier, J. M., & Burri, J. (1999). Effect of free fatty acids addition on corn grits extrusion cooking. Cereal Chemistry, 76(5), 699–704.

    Article  CAS  Google Scholar 

  • Fabian, H., & Mäntele, W. (2006). Infrared spectroscopy of proteins biochemical applications infrared spectroscopy of proteins. Handbook of Vibrational Spectroscopy.

  • Fan, J., Mitchell, J. R., & Blanshard, J. M. V. (1996). The effect of sugars on the extrusion of maize grits—the role of glass transmission in determining product density and shape. International Journal of Food Science and Technology, 31, 51–65.

    CAS  Google Scholar 

  • Flores-Morales, A., Jiménez-Estrada, M., & Mora-Escobedo, R. (2012). Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydrate Polymers, 87(1), 61–68.

    Article  CAS  Google Scholar 

  • Guerrero, et al. (2014). FTIR characterization of protein-polysaccharide interactions in extruded blends. Carbohydrate Polymers, 111, 598–605.

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Ortiz, F. A., Hernández-Sánchez, H., Yee-Madeira, H., San Martín-Martínez, E., Robles-Ramírez, M. C., Rojas-López, M., Berríos, J. J., & Mora-Escobedo, M. (2014). Physico-chemical, nutritional and infrared spectroscopy evaluation of an optimized soybean/corn flour extrudate. Journal of Food Science and Technology, 52(7), 4066–4077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, M., Chang, M., & Kim, M. (2007). Changes in physicochemical properties of rice starch processed by ultra-fine pulverization. Journal of Applied Biological Chemistry, 50, 234–238.

    Google Scholar 

  • Hermansson, A.-M. (1988). Gel structure of food biopolymers. In J. M. V. Blanshard & J. R. Mitchell (Eds.), Food structure. Its creation and evaluation (p. 25). London: Butterworths.

    Google Scholar 

  • Ilo, S., Schoenlechner, R., & Berghofe, E. (2000). Role of lipids in the extrusion cooking processes. Grasas y Aceites, 51, 97–110.

    Article  CAS  Google Scholar 

  • Jane, J. L., Wong, K. S., & McPherson, A. E. (1997). Branch-structure difference in starches of A and B-type X-ray patterns revealed by their Naegelidextrins. Carbohydrate Research, 300(3), 219–227.

    Article  CAS  Google Scholar 

  • Jiménez-Elizondo, N., Sobral, P. J. A., & Menegalli, F. C. (2009). Development of films based on blends of Amaranthus cruentus flour and polyvinyl alcohol. Carbohydrate Polymers, 75(4), 592–598.

    Article  CAS  Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis. New.

  • Jolliffe, I. T. (2002). Principal component. analysis (2nd ed.). New York: Springer.

    Google Scholar 

  • Jyothi, A. N., Sheriff, J. T., & Sajeev, M. S. (2009). Physical and functional properties of arrowroot starch extrudates. Journal of Food Science, 72, E97–E104.

    Article  CAS  Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (1987). Statistical data analysis based on the L1 norm. In Y. Dodge (Ed.), Clustering by means of medoids (pp. 405–416). North-Holland: Prentice Hall.

    Google Scholar 

  • Le Bail, P., Bizot, H., Ollivon, M., Keller, G., Bourgaux, C., & Buléon, A. (1999). Monitoring the crystallization of amylose–lipid complexes during maize starch melting by synchrotron x-ray diffraction. Biopolymers, 50(1), 99–110.

    Article  Google Scholar 

  • Lewis, R. N., McElhaney, R. N., Pohle, W., & Mantsch, H. H. (1994). Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation. Biophysical Journal, 67(6), 2367–2375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, T., Ma, Y., Yu, F., Shi, J., & Xue, S. (2011). The effect of ballmilling treatment on structure and porosity of maiz starch granule. Innovative Food Science & Emerging Technologies, 12(4), 586–593.

    Article  CAS  Google Scholar 

  • Mendelsohn, R., Anderle, G., Jaworsky, M., Mantsch, H. H., & Dluhy, R. A. (1984). Fourier transform infrared spectroscopic studies of lipid-protein interaction in native and reconstituted sarcoplasmic reticulum. Biochimica et Biophysica Acta (BBA) - Biomembranes, 775(2), 215–224.

    Article  CAS  Google Scholar 

  • Merayo, Y. A., Gonzalez, R. J., Drago, S. R., Torres, R. L., & De Greef, D. M. (2011). Extrusion conditions and Zea mays endosperm hardness affecting gluten-free spaghetti quality. International Journal of Food Science and Technology, 46(11), 2321–2328.

    Article  CAS  Google Scholar 

  • Mercier, C., Charbonniere, R., Ggrebaut, J., & de la Gueriviere, J. F. (1980). Formation of arnylose-lipid complexes by twin screw extrusion cooking of manoic starch. Cereal Chemistry, 57, 4–9.

    CAS  Google Scholar 

  • Nascimento, A. C., Mota, C., Coelho, I., Gueifão, S., Santos, M., Matos, A. S., Gimenez, A., Lobo, M., Samman, N., & Castanheira, I. (2014). Characterization of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthuscaudatus), and purple corn (Zeamays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chemistry, 148, 420–426.

    Article  CAS  PubMed  Google Scholar 

  • Ottenhof, M. A., Hill, S., & Farhat, I. A. (2005). Comparative study of the retrogradation of intermediate water content waxy maize, wheat, and potato starches. Journal of Agricultural and Food Chemistry, 53(3), 631–638.

    Article  CAS  PubMed  Google Scholar 

  • Qian, J., & Kuhn, M. (1999). Characterization of Amaranthus cruentus and Chenopodium quinoa starch. Starch-Stärke, 51(4), 116–120.

    Article  CAS  Google Scholar 

  • Ramos Diaz, J. M., Kirjoranta, S., Tenitz, S., Penttilä, P. A., Serimaa, R., Lampi, A.-M., & Jouppila, K. (2013). Use of amaranth, quinoa and kañiwa in extruded corn-based snacks. Journal of Cereal Science, 58(1), 59–67.

    Article  CAS  Google Scholar 

  • Rampersad, R., Badrie, N., & Comissiong, E. (2003). Physico-chemical and sensory characteristics of flavoured snacks from extruded cassava/pigeonpea flour. Journal of Food Science, 68(1), 363–367.

    Article  CAS  Google Scholar 

  • Roa, F. D., Buera, M. P., Tolaba, M., & Acosta, D. F. R. (2014a). Amaranth milling strategies and fraction characterization by FT-IR. Food and Bioprocess Technology, 7, 711.

    Article  CAS  Google Scholar 

  • Roa, F. D., Santagapita, P. R., Buera, M. P., & Tolaba, M. P. (2014b). Ball milling of amaranth starch-enriched fraction. Changes on particle size, starch crystallinity, and functionality. Food and Bioprocess Technology, 7(9), 2723–2731.

    Article  CAS  Google Scholar 

  • Ruales, J., & Nair, B. (1992). Nutritional quality of the proteins in quinoa (Chenopodium quinoa Willd.) seeds. Plant Food for Human Nutrition, 42(1), 1–11.

    Article  CAS  Google Scholar 

  • Sandoval-Oliveros, M., & Paredes-López, O. (2013). Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). Journal of Agriculture and Food Chemistry., 61, 193−201.

    Article  CAS  Google Scholar 

  • Sevenou, O., Hill, S. E., Farhat, I. A., & Mitchell, J. R. (2002). Organization of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules, 31(1-3), 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., Gujral, H. S., & Singh, B. (2012). Antioxidant activity of barley as affected by extrusion cooking. Food Chemistry, 131(4), 1406–1413.

    Article  CAS  Google Scholar 

  • Shrestha, K., Ng, C., Lopez-Rubio, A., Blazek, J., Gilbert, E., & Gidley, M. (2010). Enzyme resistance and structural organization in extruded high amylose maize starch. Carbohydrate Polymers, 80(3), 699–710.

    Article  CAS  Google Scholar 

  • Singh, S., Gamlath, S., & Wakeling, L. (2007). Nutritional aspects of food extrusion: a review. International Journal of Food Science and Technology, 42(8), 916–929.

    Article  CAS  Google Scholar 

  • Tapia-Blácido D. (2006). Edible films based on amaranth flour and starch. PhD thesis. Department of Food Engineering, Campinas, SP, Brazil.

  • Thachil, M. T., Chouksey, M. K., & Gudipati, V. (2014). Amylose-lipid complex formation during extrusion cooking: effect of added lipid type and amylose level on corn-based puffed snacks. International Journal of Food Science and Technology, 49(2), 309–316.

    Article  CAS  Google Scholar 

  • Utrilla-Coello, R. G., Hernández-Jaimes, C., Carrillo-Navas, H., González, F., Rodríguez, E., Bello-Pérez, L. A., & Alvarez-Ramirez, J. (2014). Acid hydrolysis of native corn starch: morphology, crystallinity, rheological and thermal properties. Carbohydrate Polymers, 103(1), 596–602.

    Article  CAS  PubMed  Google Scholar 

  • Valdivia-López, M. A., & Tecante, A. (2015). Chia (Salvia hispanica): a review of native Mexican seed and its nutritional and functional properties. Advances in Food and Nutrition Research, 75, 53–75.

    Article  PubMed  Google Scholar 

  • Van den Berg, F., Lyndgaard, C. B., Sørensen, K. M., & Engelsen, S. B. (2013). Process analytical technology in the food industry. Trends in Food Science and Technology, 31(1), 27–35.

    Article  CAS  Google Scholar 

  • Yan, Z., Sousa-Gallagher, M. J., & Oliveira, F. A. R. (2008). Shrinkage and porosity of banana, pineapple and mango slices during air-drying. Journal of Food Engineering., 84(3), 430–440. https://doi.org/10.1016/j.jfoodeng.2007.06.004.

    Article  Google Scholar 

  • Yang, Q., Yang, Y., Luo, Z., Xiao, Z., Ren, H., Li, D., & Yu, J. (2016). Effects of lecithin addition on the properties of extruded maiz starch. Journal of Food Processing and Preservation, 40(1), 20–28. https://doi.org/10.1111/jfpp.12579.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.P.B. and S.D.R. are members of the CONICET research staff. A.F. is a member of the Instituto Nacional de Tecnología Agropecuaria (INTA, Pergamino). M.C. is a recipient of a CONICET fellowship.

Funding

This work was supported by Bilateral Cooperation Project MINCYT-BMWF (AU1205.WTZ Project Nr. AR 16/2013.), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2013-1331), Universidad de Buenos Aires (UBACYT 20020130100443BA), and Instituto Nacional de Tecnología Agropecuaria (PNAyVA 1130043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Cueto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cueto, M., Farroni, A., Rodríguez, S.D. et al. Assessing Changes in Enriched Maize Flour Formulations After Extrusion by Means of FTIR, XRD, and Chemometric Analysis. Food Bioprocess Technol 11, 1586–1595 (2018). https://doi.org/10.1007/s11947-018-2113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2113-6

Keywords

Navigation