Skip to main content

Advertisement

Log in

Effect of High Hydrostatic Pressure and Temperature on Enzymatic Activity and Quality Attributes in Mango Puree Varieties (cv. Tommy Atkins and Manila)

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Pectinmethylesterase (PME), peroxidase (POD), and polyphenoloxidase (PPO) residual activities (RAs) and physicochemical parameters (pH, total soluble solids (TSS), water activity (aw), viscosity and color) of Tommy Atkins and Manila mango purees (MPs) were evaluated after high hydrostatic pressure (HHP) treatments at 400–550 MPa/0–16 min/34 and 59 °C. HHP treatment applied at 59 °C induced higher enzyme inactivation levels than the treatment applied at 34 °C in both MPs. The lowest RA of PME (26.9–38.6%) and POD (44.7–53%) was achieved in Manila MP treated at 450 MPa/8–16 min/59 °C and 550 MPa/4–16 min/59 °C, respectively. Otherwise, Tommy Atkins puree pressurized at 550 MPa/8–16 min/59 °C had the lowest PPO RA (28.4–34%). A slight decrease in pH and TSS values of both HHP-processed MPs at 34 and 59 °C was observed, whereas the aw remained constant after processing. The viscosity of MPs tended to augment up to 2.1 times due to the application of HHP. No significant changes were observed in color parameters of Tommy Atkins MP, except at 550 MPa and 59 °C where higher yellow index (YI) (122.4 ± 3.3) and lower L* (37.3 ± 5.3) were obtained compared to the untreated MP. HHP caused an increase in L* values in Manila MP, whereas no clear trend was observed in YI. HHP processing at 550 MPa combined with mild temperature (59 °C) during 8 min could be a feasible treatment to reduce enzymatic activity and preserve fresh-like quality attributes in MP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PME:

Pectinmethylesterase

POD:

Peroxidase

PPO:

Polyphenoloxidase

RA:

Residual activity

TSS:

Total soluble solids

a w :

Water activity

MP:

Mango puree

HHP:

High hydrostatic pressure

YI:

Yellow index

CUT:

Come-up time

°Bx:

Brix degree

References

  • Ahmed, J., Ramaswamy, H. S., & Hiremath, N. (2005). The effect of high pressure treatment on rheological characteristics and colour of mango pulp. International Journal of Food Science and Technology, 40(8), 885–895.

    Article  CAS  Google Scholar 

  • Anese, M., Nicoli, M. C., DallAglio, G., & Lerici, C. R. (1994). Effect of high pressure treatments on peroxidase and polyphenoloxidase activities. Journal of Food Biochemistry, 18, 285–293.

    Article  Google Scholar 

  • Balny, C., & Masson, P. (1993). Effects of high-pressure on proteins. Food Reviews International, 9(4), 611–628.

    Article  CAS  Google Scholar 

  • Baron, A., Denes, J. M., & Durier, C. (2006). High-pressure treatment of cloudy apple juice. LWT — Food Science and Technology, 39(9), 1005–1013.

    Article  CAS  Google Scholar 

  • Basak, S., & Ramaswamy, H. S. (1996). Ultra high pressure treatment of orange juice: a kinetic study on inactivation of pectin methyl esterase. Food Research International, 29(7), 601–607.

    Article  CAS  Google Scholar 

  • Bayindirli, A. (2010). Enzymes in fruit and vegetable processing: chemistry and engineering applications. CRC Press.

  • Bermudez-Aguirre, D., Guerrero-Beltrán, J. A., Barbosa-Cánovas, G. V., & Welti-Chanes, J. (2011). Study of the inactivation of Escherichia coli and pectin methylesterase in mango nectar under selected high hydrostatic pressure treatments. Food Science and Technology International, 17(6), 541–547.

    Article  CAS  Google Scholar 

  • Boynton, B. B., Sims, C. A., Sargent, S., Balaban, M. O., & Marshall, M. R. (2002). Quality and stability of precut mangos and carambolas subjected to high-pressure processing. Journal of Food Science, 67(1), 409–415.

    Article  CAS  Google Scholar 

  • Camiro-Cabrera, M., Escobedo-Avellaneda, Z., Salinas-Roca, B., Martín-Belloso, O., & Welti-Chanes, J. (2017). High hydrostatic pressure and temperature applied to preserve the antioxidant compounds of mango pulp (Mangifera indica L.) Food Bioprocess Technology, 10(4), 639–649.

    Article  CAS  Google Scholar 

  • Cano, M. P., Hernández, A., & de Ancos, B. (1997). High pressure and temperature effects on enzyme inactivation in strawberry and orange products. Journal of Food Science, 62(1), 85–88.

    Article  CAS  Google Scholar 

  • Chakraborty, S., Mishra, H. N., & Knorr, D. (2012). Strawberry enzyme inactivation by HPP: models & contours. Germany: Lambert Academic Publishing.

    Google Scholar 

  • Chakraborty, S., Rao, P.S., & Mishra, H.N. (2013). Unpublished data. Indian Institute of Technology Kharagpur. Agricultural and Food Engineering Department Kharagpur, India.

  • Chakraborty, S., Kaushik, N., Rao, P. S., & Mishra, H. N. (2014). High-pressure inactivation of enzymes: a review on its recent applications on fruit purees and juices. Comprehensive Reviews in Food Science and Food Safety, 13(4), 578–596.

    Article  CAS  Google Scholar 

  • Elez-Martínez, P., Aguiló-Aguayo, I., & Martín-Belloso, O. (2006). Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by process parameters. Journal of the Science of Food and Agriculture, 86(1), 71–81.

    Article  Google Scholar 

  • Escobedo-Avellaneda, Z., Pérez-Simón, I., Lavilla-Martín, M., Baranda-González, A., & Welti-Chanes, J. (2017). Enzymatic and phytochemical stabilization of orange-strawberry-banana beverages by high hydrostatic pressure and mild heat. Food Science and Technology International, 23(2), 185–193.

    Article  CAS  Google Scholar 

  • Guerrero-Beltrán, J. A., Swanson, B. G., & Barbosa-Cánovas, G. V. (2004). High hydrostatic pressure processing of peach puree with and without antibrowning agents. Journal of Food Processing and Preservation, 28(1), 69–85.

    Article  Google Scholar 

  • Guerrero-Beltrán, J. A. (2005). High hydrostatic pressure processing of mango puree containing antibrowning agents. Food Science and Technology International, 11(4), 261–267.

    Article  Google Scholar 

  • Heremans, K. (1993). The behavior of proteins under pressure. In R. Winter & J. Jonas (Eds.), High-pressure chemistry, biochemistry and materials science (pp. 443–469). New York: Springer.

    Chapter  Google Scholar 

  • Heremans, K. (1995). High pressure effects on biomolecules. In D. A. Ledward, D. E. Johnston, R. G. Earnshaw, & A. P. M. Hasting (Eds.), High pressure processing of foods (pp. 81–97). Leicestershire: Nottingham University Press.

    Google Scholar 

  • Hernandez, A., & Cano, M. P. (1998). High-pressure and temperature effects on enzyme inactivation in tomato puree. Journal of Agricultural and Food Chemistry, 46(1), 266–270.

    Article  CAS  Google Scholar 

  • Katsaros, G. J., Alexandrakis, Z. S., & Taoukis, P. S. (2017). Kinetic assessment of high pressure inactivation of different plant origin pectinmethylesterase enzymes. Food Engineering Reviews, 9(3), 170–189. https://doi.org/10.1007/s12393-016-9153-3.

    Article  CAS  Google Scholar 

  • Kaushik, N., Kaur, B. P., Rao, P. S., & Mishra, H. N. (2014a). Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science & Emerging Technologies, 22, 40–50.

    Article  CAS  Google Scholar 

  • Kaushik, N., Kaur, B. P., & Rao, P. S. (2014b). Application of high pressure processing for shelf life extension of litchi fruits (Litchi chinensis cv. Bombai) during refrigerated storage. Revista de Agroquímica y Tecnología de Alimentos, 20(7), 527–541.

    Google Scholar 

  • Kaushik, N., Nadella, T., & Rao, P. S. (2015). Impact of pH and total soluble solids on enzyme inactivation kinetics during high pressure processing of mango (Mangifera indica) pulp. Journal of Food Science, 80(11), E2459–E2470.

    Article  CAS  Google Scholar 

  • Kimball, D. A. (Ed.) (2012). Citrus processing: quality control and technology. Springer Science & Business Media.

  • Krebbers, B., Matser, A. M., Hoogerwerf, S. W., Moezelaar, R., Tomassen, M. M. M., & van den Berg, R. W. (2003). Combined high-pressure and thermal treatments for processing of tomato puree: evaluation of microbial inactivation and quality parameters. Innovative Food Science and Emerging Technologies, 4(4), 377–385.

    Article  Google Scholar 

  • Lei, D. F., Feng, Y., & Jiang, D. Z. (2004). Characterization of polyphenol oxidase from plants. Progress in Natural Science, 14(7), 553–561.

    Article  CAS  Google Scholar 

  • Liu, F., Li, R., Wang, Y., Bi, X., & Liao, X. (2014). Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: changes in microorganisms, acid invertase, 5-hydroxymethylfurfural, sugars, viscosity, and cloud. Innovative Food Science & Emerging Technologies, 22, 22–30.

    Article  Google Scholar 

  • Liu, F., Wang, Y., Bi, X., Guo, X., Fu, S., & Liao, X. (2012). Comparison of microbial inactivation and rheological characteristics of mango pulp after high hydrostatic pressure treatment and high temperature short time treatment. Food and Bioprocess Technology, 6(10), 2675–2684.

    Google Scholar 

  • Liu, F., Wang, Y., Li, R., Bi, X., & Liao, X. (2013a). Effects of high hydrostatic pressure and high temperature short time on antioxidant activity, antioxidant compounds and color of mango nectars. Innovative Food Science & Emerging Technologies, 21, 35–43.

    Article  Google Scholar 

  • Liu, Y., Zhao, X. Y., Zou, L., & Hu, X. S. (2013b). Effect of high hydrostatic pressure on overall quality parameters of watermelon juice. Food Science and Technology International = Ciencia Y Tecnología de Los Alimentos Internacional, 19(3), 197–207.

    CAS  Google Scholar 

  • Marszalek, K., Mitek, M., & Skapska, S. (2015). The effect of thermal pasteurization and high pressure processing at cold and mild temperatures on the chemical composition, microbial and enzyme activity in strawberry puree. Innovative Food Science and Emerginf Technology, 27, 48–56.

    Article  CAS  Google Scholar 

  • Nath, P., Kale, S. J., & Gupta, R. K. (2016). High pressure processing induced changes in bioactive compounds, antioxidant activity, microbial safety and color attributes of coriander paste. Agricultural Research, 5(2), 182–192.

    Article  CAS  Google Scholar 

  • Plaza, L., Duvetter, T., Monfort, S., Clynen, E., Schoofs, L., Van Loey, A. M., & Hendrickx, M. E. (2007). Purification and thermal and high-pressure inactivation of pectinmethylesterase isoenzymes from tomatoes (Lycopersicone sculentum): a novel pressure labile isoenzymes. Journal of Agricultural and Food Chemistry, 55(22), 9259–9265.

    Article  CAS  Google Scholar 

  • Riahi, E., & Ramaswamy, H. S. (2003). High-pressure processing of apple juice: kinetics of pectin methyl esterase inactivation. Biotechnology Progress, 19(3), 908–914.

    Article  CAS  Google Scholar 

  • Rovere, P., Sandei, L., Colombi, A., Munari, M., Ghiretti, G., Carpi, G., & AllAglio, G. (1997). Effects of high-pressure treatment on chopped tomatoes. Industria Conserve, 72, 3–12.

    Google Scholar 

  • Sarkiyayi, S., Mohammed, M., & Yakubu, A. (2013). Comparative analysis of nutritional and anti nutritional contents of some varieties of mango (Mangifera indica) in Kaduna Metropolis-Nigeria. Research Journal of Applied Sciences, Engineering and Technology, 5(4), 387–391.

    CAS  Google Scholar 

  • Saúco, V. G. (2013). Worldwide mango production and market: current situation and future prospects. Acta Horticulturae, (992), 37–48.

  • Serment-Moreno, V., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2014). High-pressure processing: kinetic models for microbial and enzyme inactivation. Food Engineering Reviews, 6(3), 56–88.

    Article  CAS  Google Scholar 

  • Swami, N. R., Kaushik, N., & Rao, P. S. (2014). Effect of high pressure processing on rheological properties, pectinmethylesterase activity and microbiological characteristics of aloe vera (Aloe barbadensis Miller) juice. International Journal of Food Properties, 18(7), 1597–1612.

    Article  Google Scholar 

  • Swami, N. R., Chakraborty, S., & Rao, P. S. (2017). Effect of high pressure thermal processing on the quality attributes of Aloe vera-litchi mixed beverage. Innovative Food Science and Emerging Technologies, 40, 68–77.

    Article  Google Scholar 

  • Tauscher, B. (1995). Pasteurization of food by hydrostatic high pressure: chemical aspects. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 200(1), 3–13.

    Article  CAS  Google Scholar 

  • Tejada-Ortigoza, V., Escobedo-Avellaneda, Z., Valdez-Fragoso, A., Mújica-Paz, H., & Welti-Chanes, J. (2015). Combined effect of high hydrostatic pressure and mild heat treatments on the pectin methylesterase (PME) inactivation in comminuted orange. Journal of the Science of Food and Agriculture., 95(12), 2438–2444.

    Article  CAS  Google Scholar 

  • Terefe, N. S., Yang, Y. H., Knoerzer, K., Buckow, R., & Versteeg, C. (2010). High-pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Science and Emerging Technologies, 11(1), 52–60.

    Article  CAS  Google Scholar 

  • Terefe, N. S., Buckow, R., & Versteeg, C. (2014). Quality-related enzymes in fruit and vegetable products: effects of novel food processing technologies, part1: high-pressure processing. Critical Reviews in Food Science and Nutrition, 54(1), 24–63.

    Article  CAS  Google Scholar 

  • Terefe, N. S., Delon, A., Buckow, R., & Versteeg, C. (2015). Blueberry polyphenol oxidase: characterization and the kinetics of thermal and high pressure activation and inactivation. Food Chemistry, 188, 193–200.

    Article  CAS  Google Scholar 

  • Vargas-Ortiz, M. A., Quintana-Castro, R., Oliart-Ros, R. M., De la Cruz-Medina, J., Ramírez de León, J. A., & García, H. S. (2013). High hydrostatic pressure induces synthesis of heat-shock proteins and trehalose-6-phosphate synthase in Anastrepha ludens larvae. Archives of Insect Biochemistry and Physiology, 82(4), 196–212.

    Article  CAS  Google Scholar 

  • Vásquez-Caicedo, A. L., Schilling, S., Carle, R., & Neidhart, S. (2007). Effects of thermal processing and fruit matrix on β-carotene stability and enzyme inactivation during transformation of mangoes into purée and nectar. Food Chemistry, 102(4), 1172–1186.

    Article  Google Scholar 

  • von Rohr, P. R., & Trepp, C. (1996). High pressure chemistry engineering. Amsterdam: Elsevier Science.

    Google Scholar 

  • Yu, Y., Xiao, G., Wu, J., Xu, Y., Tang, D., Chen, Y., Wen, J., & Fu, M. (2013). Comparing characteristic of banana juices from banana pulp treated by high pressure carbon dioxide and mild heat. Innovative Food Science & Emerging Technologies, 18, 95–100.

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from Tecnologico de Monterrey (Research Chair Founds CAT 200 and CDB081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Welti-Chanes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-de la Peña, M., Salinas-Roca, B., Escobedo-Avellaneda, Z. et al. Effect of High Hydrostatic Pressure and Temperature on Enzymatic Activity and Quality Attributes in Mango Puree Varieties (cv. Tommy Atkins and Manila). Food Bioprocess Technol 11, 1211–1221 (2018). https://doi.org/10.1007/s11947-018-2090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2090-9

Keywords

Navigation